@article{RSMUP_2007__117__167_0,
author = {Zannier, Umberto},
title = {Proof of the existence of certain triples of polynomials},
journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
pages = {167--174},
year = {2007},
publisher = {Seminario Matematico of the University of Padua},
volume = {117},
mrnumber = {2351792},
zbl = {1139.12005},
language = {en},
url = {https://www.numdam.org/item/RSMUP_2007__117__167_0/}
}
TY - JOUR AU - Zannier, Umberto TI - Proof of the existence of certain triples of polynomials JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2007 SP - 167 EP - 174 VL - 117 PB - Seminario Matematico of the University of Padua UR - https://www.numdam.org/item/RSMUP_2007__117__167_0/ LA - en ID - RSMUP_2007__117__167_0 ER -
%0 Journal Article %A Zannier, Umberto %T Proof of the existence of certain triples of polynomials %J Rendiconti del Seminario Matematico della Università di Padova %D 2007 %P 167-174 %V 117 %I Seminario Matematico of the University of Padua %U https://www.numdam.org/item/RSMUP_2007__117__167_0/ %G en %F RSMUP_2007__117__167_0
Zannier, Umberto. Proof of the existence of certain triples of polynomials. Rendiconti del Seminario Matematico della Università di Padova, Tome 117 (2007), pp. 167-174. https://www.numdam.org/item/RSMUP_2007__117__167_0/
[B] , Ramified primes in the field of moduli of branched coverings of curves. J. Algebra, 125, no. 1 (1989), pp. 236-255. | Zbl | MR
[L] , Algebra, Springer-Verlag. | Zbl | MR
[VW] - , Vanishing Polynomial Sums, Comm. in Algebra, 31, no. 2 (2003), pp. 751-772. | Zbl | MR
[Vo] , Groups as Galois groups, Cambridge Studies in Adv. Math., 53, Camb. Univ. Press, 1996. | Zbl | MR
[Z1] , Some remarks on the S-unit equation in function fields, Acta Arith. LXIV (1993), pp. 87-98. | Zbl | MR
[Z2] , On Davenport's bound for the degree of f 3 - g2 and Riemann Existence Theorem, Acta Arith., LXXI (1995), pp. 107-137. | Zbl | MR
[Z3] , Good reduction of certain covers P1 3 P1 , Israel J. of Math., 124 (2001), pp. 93-114. | Zbl | MR






