@article{RSMUP_2007__117__113_0,
author = {Ascanelli, Alessia},
title = {Well posedness under {Levi} conditions for a degenerate second order {Cauchy} problem},
journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
pages = {113--126},
year = {2007},
publisher = {Seminario Matematico of the University of Padua},
volume = {117},
mrnumber = {2351788},
zbl = {1146.35054},
language = {en},
url = {https://www.numdam.org/item/RSMUP_2007__117__113_0/}
}
TY - JOUR AU - Ascanelli, Alessia TI - Well posedness under Levi conditions for a degenerate second order Cauchy problem JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2007 SP - 113 EP - 126 VL - 117 PB - Seminario Matematico of the University of Padua UR - https://www.numdam.org/item/RSMUP_2007__117__113_0/ LA - en ID - RSMUP_2007__117__113_0 ER -
%0 Journal Article %A Ascanelli, Alessia %T Well posedness under Levi conditions for a degenerate second order Cauchy problem %J Rendiconti del Seminario Matematico della Università di Padova %D 2007 %P 113-126 %V 117 %I Seminario Matematico of the University of Padua %U https://www.numdam.org/item/RSMUP_2007__117__113_0/ %G en %F RSMUP_2007__117__113_0
Ascanelli, Alessia. Well posedness under Levi conditions for a degenerate second order Cauchy problem. Rendiconti del Seminario Matematico della Università di Padova, Tome 117 (2007), pp. 113-126. https://www.numdam.org/item/RSMUP_2007__117__113_0/
[1] - , Energy estimate and Fundamental Solution for Degenerate Hyperbolic Cauchy problems. J. Differential Equations, 217 (2005), pp. 305-340. | Zbl | MR
[2] - , Well posedness of the Cauchy problem for some degenerate hyperbolic operators. Pseudo-Differential Operators and Related Topics, Series: Operator Theory: Advances and Applications, Vol. 164, Editors: P. Boggiatto, L. Rodino, J. Toft, M.-W. Wong, Birkhuser Verlag Basel/Switzerland (2006), pp. 23-41. | Zbl | MR
[3] , The Cauchy problem for hyperbolic operators with characteristics of variable multiplicity. Trudy Moskov. Mat. Obshch. 41 (1980), pp. 83-99. | Zbl | MR
[4] , The Cauchy problem for strictly hyperbolic operators with non-absolutely continuous coefficients. Tsukuba J. Math. 27 (2003), pp. 1-12. | Zbl | MR
[5] , Coefficients with unbounded derivatives in hyperbolic equations. Math. Nachr. 277 (2004), pp. 1-16. | Zbl | MR
[6] - - , Sur les équations hyperboliques avec des coefficients qui ne dépendent que du temps. Ann. Sc. Norm. Sup. Pisa 6 (1979), pp. 511-559. | Zbl | MR | Numdam
[7] - - , Well posedness of the Cauchy problem for a hyperbolic equation with non-Lipschitz coefficients. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 1 (2002), pp. 327-358. | Zbl | MR | Numdam
[8] - - , On the optimal regularity coefficients in hyperbolic Cauchy problem, Bull. Sci. Math. 127 (2003), pp. 328-347. | Zbl | MR
[9] - - , On the Cauchy problem for finitely degenerate hyperbolic equations of second order. Ark. Mat. 38 (2000), pp. 223-230. | Zbl | MR
[10] - - , Well posedness in Gevrey classes of the Cauchy problem for a non strictly hyperbolic equation with coefficients depending on time. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 10 (1983), pp. 291-312. | Zbl | MR | Numdam
[11] - , On finitely degenerate hyperbolic operators of second order. Osaka J. Math. 41, 4 (2004) pp. 933-947. | Zbl | MR
[12] , Conditions for correctness in Gevrey classes of the Cauchy problem for hyperbolic operators with characteristics of variable multiplicity. (Russian) Sibirsk. Mat. ZÏ. 17 (1976), pp. 1256-1270. | Zbl | MR
[13] , Cauchy problem for nonstrictly hyperbolic systems in Gevrey classes. J. Math. Kyoto Univ. 23-3 (1983), pp. 599-616. | Zbl | MR
[14] - , Construction of parametrix for hyperbolic equations with fast oscillations in non-Lipschitz coefficients. Comm. Partial Differential Equations 28 (2003), pp. 1471-1502. | Zbl | MR
[15] , On the Cauchy problem. Notes and Reports in Mathematics in Science and Engineering, 3. Academic Press, Inc., Orlando, FL; Science Press, Beijing, 1985. | Zbl | MR
[16] , The Cauchy problem for weakly hyperbolic equations of second order. Comm. Partial Differential Equations, 5 (1980), pp. 1273-1296. | Zbl | MR





