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Intersection differential forms

GUIDO POLLINT (¥)

ABSTRACT - We present a survey about the complex I,Q%,- of intersection differential
forms, a sub complex of the de Rham complex of the regular locus .4, of a
controlled pseudomanifold .2~ endowed with a perversity function p, which
computes the real intersection cohomology with respect to the fixed perversity.

Introduction.

The intersection homology theory developed by M. Goresky and R.
MacPherson in [GM1] has proven to be an useful tool in studying singular
spaces; the original geometric definition goes roughly as follow. Consider a
PL-pseudomanifold .2 with a fixed stratification and its complex C, (‘I ¥ R)
of PL-chains with real coefficients; if S were a stratum of @ and & an i-chain
in general position with S then their intersection would have dimension
< i+cod S—dim 4. Thus one can assign to every codimension of the strata
an integer p (cod S) that is the extra amount of this intersection dimension
which is allowed. If the perversity function p is fixed then the chain ¢ is called
p-perverse if for every stratum S, dim|&| NS < i+cod S—dim. L +p(cod S);
the perversity measures how much a chain is free to intersect the singular
part of the pseudomanifold. This leads to the definition of intersection
homology as the homology of the complex I,C. (ﬂ"; R) of the p-perverse
chains in .4

An alternative technical approach to intersection cohomology using
sheaf theory is described in [GM2] where an axiomatic framework for IC is
also proved (Deligne’s axioms).

In this survey we describe another method originally due to Goresky
and MacPherson to compute such cohomology using special differential
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forms which is more geometrical than the latter; in a smooth manifold a
differential form can thought as a shape evaluator of chains (the flat cochain
interpretation): every infinitesimal element of a smooth chain is evaluated
using multilinear form which returns somehow its volume and then ev-
erything is integrated in some sense. In a singular space there is not a
geometric definition of tangent bundle, so infinitesimal elements and dif-
ferential forms are meaningless; however, if the space is good enough there
is an additional structure (a control data) consisting in a family of tubular
neighborhoods and retractions for the strata with high compatibility de-
gree. This family can be used to define on the regular part of X" the di-
rection toward the singularities; using this extra informations the smooth
part can remember the original singularities. Now, fix a stratum S with tube
T, retraction 7g and associated perversity p: a smooth differential :-form w
in @64 has perversity p with respect to S if for every x € "N T's evaluates
as zero every «infinitesimal i-element» at x which contains more that p
«infinitesimal directions» along the fibers of ng which are smooth sub-
manifolds. Thus a form is said to have low perversity if it is unable to detect
an infinitesimal element when is too directed toward the singular locus.
Fixing a perversity p and repeating this reasoning for every stratum lead to
the complex of sheaves I,Q°%- of differential intersection forms.

The axiomatic framework is used to show that this complex has the same
local properties of the IC complex and thus it computes intersection coho-
mology. Moreover, some well-known properties of classic forms as softness,
Poincaré lemma, Mayer-Vietoris sequence and a partial Kiinneth formula
are proved.

The definition of I, 2% here presented is not new: it has been introduced
in [BRY] where it is attributed to Goresky and MacPherson (unpublished);
such complex is reconsidered in [BHS] where the aim of the authors is to
establish a pairing between a complex of singular intersection chains de-
scribed by King [KIN] and the complex I,Q%, : they show that intersection
differential forms with some extra properties can be integrated on parti-
cular intersection homology chains, using some local computations typical
in intersection homology to complete their program.

There also exists variations on this complex, for example the complex of
2-regular forms of intersection introduced in the papers [BF] and also
[SAR]; the definition is similar to the definition presented in this survey,
but now forms are given on all strata (and not only the open one) with some
gluing conditions on the neighborhood of the strata. Using the axiomatic
theory of Deligne for intersection cohomology the authors also prove that
their complex is quasi-isomorphic to the intersection cohomology sheaf.
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The technical bulk of this article is a mixture of such local computations
and axiomatic approach.

Notations.

— If 7/ is a smooth manifold we denote with tan.//, Z[ //Tand QI
respectively the tangent bundle, the family of smooth vector fields and the
differential j-forms.

— If 7 is a sheaf of R-vector spaces over a topological space .4 and
S C. 2 we denote the section of ¢ over S with I'(S; ¢) or _Z[S] and the
stalk of _¢ over a point x€ X" as .

— If _¢* is a complex of sheaves then 72l (_*) denote the j-th coho-
mology sheaf; if M* is a complex of R-vector spaces then H/(M®) is j-th
cohomology vector space.

1. Controlled pseudomanifolds.

We briefly collect here the main definitions and theorems about stra-
tifications and control theory; a detailed and modern description of such
topics can be found in [PFL] (chapters 1-3) which is the main reference.
Other sources include the older [THO], [MA1], [MA2], (GWPL] and [VER].

Roughly speaking, a controlled pseudomanifold (also known as a Thom-
Mather stratified space) is a nice topological space [1.1-A] with a good de-
composition into smooth pieces [1.1-B] where a way is given to describe
approaching to singular locus [1.1-C]; although the following formal defi-
nition seems to be very restrictive and unpleasant, almost every good sin-
gular space admits the structure of controlled pseudomanifold (see theorem
[1.3] and [1.4]):

DEFINITION 1.1. (Controlled pseudomanifold) A triple 4=, J,
{(Ts, 7, ps)}se ) ts called a controlled pseudomanifold iff the following
properties hold:

A: 2 1s a locally compact Hausdorff space with countable topology;

B: J'is a locally finite partition of X into subspaces (the strata of )

that are smooth manifolds in the induced topology and satisfy the
following conditions:

Bl: ifR,SeJS and RNS # (O then R C S (and we write R < S);
B2: if the max dimension of the strata is neN then X has no
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stratum of dimension n—1 and the union of all n-strata is open-
dense in X (if Xy, is the k-skeleton of 4, i.e. the union of strata
of dimension <k then X =Ly Xp1—Lu2=0 and
X =9 1is open-dense in X);

C: forevery S S the triple (Ts, ns, ps) (a tube for S in ) satisfies the

Sfollowing relations:

Cl: ng: Ts — S is a continuous retraction of an open neighborhood
Ts of S in X such that for every stratum R>S the restriction
nslrgng : Ts N R — S is smooth;

C2: pg: Ts — R is a continuous map such that p~2(0)=S and for
each stratum R > S the restriction pglpp:TsNRE — S is
smooth;

C8: for each pair R>S of strata, for all x € Ts N Tk Nz (Ts) we
have:

ngnp(v) = ns(x),
psmr(e) = pg(x);
C4: for each pair R >S of strata, the restriction
(ng,pg)| : TsNR — S x R™°
is submersive (in particular, ng| : Ts N R — S is submersive);

The set X yog:= L'y — L n—2 s called the regular pavt and X sng := 'y
the singular part.

A topological space with data satisfying the conditions of definition [1.1],
except perhaps for property B2, is called a controlled space; such spaces are
well behaved, however to achieve topological invariance of intersection
cohomology (see [BOR] pp. 86-96, [GM1] and [GM2]) the pseudomanifold
structure is fundamental (i.e. if @ has dimension 7 then no stratum of di-
mension 7 — 1 is allowed and the regular part must be open-dense).

Standard point-set topology shows that the topological space underlying
a controlled space is metrizable and so paracompact (and finite-dimen-
stonal by definition); by the following lemma one can assume a good se-
paration of tube-neighborhoods which will be used tacitly elsewhere (([PFL]
Prop. 3.6.7(1)):

LeEmMA 1.2. By shrinking the tubes we can assume that:
- ifSSRcS and TsNR # (O then R > S;
- ifR,Se S and TsNTgr # 0 then R and S are comparable
(te. R<S, R=SorR>S).
Every open set of a controlled pseudomanifold canonically inherits a
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structure of controlled pseudomanifold; also every smooth manifold with or
without boundary has a natural controlled pseudomanifold structure (the
latter requires a collar as tube for the boundary), but it is considerably more
difficult to prove the following existence theorem (see [PFL] Th. 3.6.9):

THEOREM 1.3. Ewery locally compact Whitney-stratified subset of a
given smooth manifold admits a structure of controlled space.

Consider as .4 a 2-torus with a circle collapsed and with the central hole
filled with a disk as in figure 2; the stratification is /:= {S,, 1,85, S},
where S and SZ are diffeomorphic to an open 2-disk and S; to an open
segment. It is easy to see that such space satisfies Whitney condition and
thus by theorem [1.3] it admits a control structure; however condition [1.1-
B2] is not satisfied since the singular set .4, := Sp U S has real codi-
mension 1 and hence .2 is not a pseudomanifold. It can be shown that the
intersection cohomology of a pseudomanifold is a topological invariant (see
[BOR] Cor. 4.18, 4.19) thus not depending on the chosen stratification and
this is generally false for a generic stratified space; however this simple
example is useful to visualize what is going on.

D y
SO
Sé’ Sl

X

So

Fig. 1. — A stratification.
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Fig. 2. — Control data.
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The following theorem allows to construct control data for a variety of
spaces ((BCR] pp. 184-214)) using theorem [1.3]:

THEOREM 1.4. The following spaces can be Whitney-stratified:
— complex analytic varieties;
— real analytic varieties.

In particular, complex analytic varieties and real analytic varieties
with dense singular locus of real dimension > 2 admit a structure of
controlled pseudomanifold.

The following constructions are needed to describe the local structure of
a controlled pseudomanifold:

ExampLE 1.5 (Cylinder). Given a controlled pseudomanifold
(O, S A{(Ts, s, ps)}ge.r) and a smooth manifold .7/ without boundary
(e.g R") one can form a control structure over the cylinder .9 x.// as
follow: the strata set is {S x M } ser and control data for a stratum S x /7
is given by (Ts x A/, s x id ;r,pg % 0); it is easily seen that this datum
verifies the conditions [1.1-A, B, C].

ExAMPLE 1.6 (Cone). Let (', /", {(Ts, 75, ps)} g r) be a compact con-

trolled pseudomanifold and consider the open cone con®/” := <=L {;i’o[, the

strata set is given by { S x 10, +oc[ } e, (lateral strata) plus the 've"r'te.oc the
unique O-stratum. Control data for lateral strata is built using the cylinder

structure as in example [1.5] and for the vertex we proceed as follow,

taking the triple ( //XX[{OOg} s Toerts Ppere) Where € > 0, the map 7,.,¢ collapses the

neighborhood into the vertex and p,,,, is the distance from vertex. As
usual, the needed verifications are trivial, but it is important to remark
that:

the only 0-stratum in the cone con®y is its vertex and the associated

retraction myer, being trivial, has just one fiber, namely the whole set

%[0, +e[
x{0}

DEFINITION 1.7 (Controlled isomorphism). A controlled isomorphism
between two controlled pseudomanifolds (U, S, {(Ts,ns,ps)}se,) and
(7, T {(Tr, 7R, pr)}pc7) ts an homeomorphism ¢: X — 7/ between the
underlying topological spaces, mapping diffeomorphically strata of X
mto strata of 9/ and satisfying the following compatibility relations:
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if S€J" is mapped by ¢ onto Re T then there exists an open
neighborhood U C T for S in X such that Ve e U:

- frs(x) = npf(x),
- ps@) = ppf().

The following is the main result due to Thom and Mather of stratifica-
tion theory (for a proof see [PFL] Th. 3.9.2 and Cor. 3.9.3); it roughly says
that a controlled space is locally a cylinder over a cone:

THEOREM 1.8 (Local structure). If .2 is a controlled pseudomanifold
then it 1s topologically locally trivial with cones as typical fibers, i.e.: for
every stratum S of X and for every x € S there exist an open neighborhood
U of x in X, a controlled compact pseudomanifold  of dimension
dim X —dim S—1 and a controlled isomorphism:

U = RdzmS X CO?’LOJ‘,‘)

mapping x to (0, vertex) (and then UNS to RS 5 {vertex}).

Thus a controlled pseudomanifold is in particular a topological pseudo-
manifold in the sense of articles [BOR] pp. 1-2 and [GM2] and it can be
shown that it also carries a structure of PL-pseudomanifold as required in
[GM1].

REMARK 1.9. To construct the intersection differential form and work
with intersection cohomology one really needs the good decomposition of
A in strata, the tubular neighborhoods and retractions and the local to-
pological triviality. The maps {pg}qc , ([1.1-C2]) will not be explicitly used
in what follows; however, they are fundamental to prove theorem [1.8] and
to ensure that the link / is a controlled pseudomanifold too.

2. Deligne’s axioms.

Here we briefly recall the formalism used by Deligne to give a sheaf
theoretic definition of the intersection cohomology of Goresky &
MacPherson; the main reference for derived categories and homological
algebra are [KS] and [IVE].

In this section X" = (2, ', {(Ts, 73, ps)}sc ) Will denote a fixed con-
trolled pseudomanifold with dim. 2 =n; denoting the k-skeleton of .4~ by
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X we get a filtration by closed sets:

-([n 2 <(1<n—1 = -(1‘11—2 2 -q/"n—?) 2 2

DXED. ... DA D202 X _1:=0

such that for each k€{0,...,n} the set S;,:= X — X1 if not empty is a
smooth k-manifold (Sj, is again called the k-stratum, although in general the
condition in definition [1.1-B1] is not satisfied). The closure of each .4
derives from local finiteness of strata [1.1-B] and the fact that if R > S then
dim R >dim S, as follows from the submersiveness condition in [1.1-C4].

Setting dually Uy, := X' — %, for each k€{2,...,n + 1} we obtain a
sequence of open sets:

By construction, Uy = Uy, O S.—i and is important to note that S,_j, is
closed in Uy, 1; in the sequel we will always denote by ;, the open inclusion
i s Up— U1,

Thus the space .2 is constructed beginning with the n-stratum
Uz = S, = X'1eg, the regular part; then we attach the (n—2)-stratum S,,_»
obtaining Us, heuristically adding to 4", a smooth n — 2-stratum of sin-
gularities; such process continues until we reach U,,_; and after gluing Sy (a
discrete set of point) we complete the construction of .4 . Starting from this,
the main idea is to check and control object defined over the whole .2~ (as
chains, cochains or sheaves) and see how they change when a new stratum
of singularities is added during the described construction. The control is
imposed using an integer valued function (see [BOR] pp. 8-9):

DEFINITION 2.1 (Perversity). A perversity associated to X is a
function p:{0,...,dimQ} — 7Z7° such that pgy=py=Pe=0 and
Py <Pgr1) <Pyt 1 the domain of p is the set of all the possible codi-
mensions of strata of .

In the case of complexes of sheaves the control process is achieved with
the following: for each k€ {2, ..., n} let D®(U,.,1) be the derived category of
cohomologically bounded R-sheaf complexes over Uj.;; the natural
transformation idys ;, , — Rij.; induced by the adjunction gives for each
sheaf complex .¢° over .2 the map:

atly : "/{.|U;¢+1—)Rik*il’;(“{WU;ﬁl) = Rig, ("'/{.|Uk)'

which is usually called the attaching map since it describes the cohomolo-
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gical sheaf theoretic passage from Uy, to Uy after the attaching of stratum
Sy_k- Its role in intersection cohomology theory is described in the fol-
lowing (see [BOR] pp. 61-62 and [GM2]):

DEFINITION 2.2 (Deligne’s axioms). Let X be a controlled pseudoma-
nifold of dimension n, and suppose p is a fixed perversity relative to the
filtration of X; a complex of sheaves A* belonging to DP(X) satisfies
Deligne’s axioms (relative to the constant sheaf R o, and to perversity p) if:

re g

— the complex A* is zero in negative degree and the restriction
A '|.<1‘mg 18 1somorphic in DB ‘reg) to the constant sheaf Rq-, (seen as a
complex concentrated in degree zero);

- foreveryke{2,...,n}, x€S,_;and j>py we have 577(L,/{’)x =0

- forevery ke{2,...,n} and for each j < py, the attaching-map atiy,
mduces a sheaf isomorphism:

reg

T (atty) A (A°|y,.,) — K7 (Rig. A°]y,).

REMARK 2.3. The last axiom of Deligne is geometrically more trans-
parent if we substitute to .7° a soft resolution, which we still call .¢* for
simplicity of notation; then the last axiom can be reformulated as follows
(note that is fundamental that S,,_, is closed in Uy, 1):

Vke{2,...,n},Vj < py and Vo € S, the restriction maps induces
an isomorphism (where V varies into a cofinal family of neighbor-
hoods of x in Uy.1):

lim H/(I(V; %) — lim H(I'(V =S, _;; .A*))

Vax Vaw

Deligne’s Axioms are patterned over the local properties of the inter-
section cochain complex of sheaves I,C*%,- (BOR]p. 34) and their role in this
context is given by the following fundamental theorem by Goresky and
MacPherson ((GM2]):

THEOREM 2.4. Let 2 be a controlled pseudomanifold and p a fixed
perversity; if A* is a complex in D () satisfying Deligne’s axioms then
its hypercohomology is naturally isomorphic to intersection cohomology.

Again, if _¢* is a complex of soft sheaves, the previous theorem implies
that it computes intersection cohomology via its global section coho-
mology, i.e. H*(I(X; A*%)) = L,H* (L R).
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Since all axioms are «local» to prove that a complex calculates inter-
section cohomology is enough to do some local computations; however,
absolutely no hint is given about the isomorphism between the cohomology
modules.

3. The complex of intersection differential forms.

Every submersion n: //—. V" between smooth manifold induces the
following well-known filtration:

Neotan* 7 € N tan* 7 € ... C AL i —adim - tan* 7 = N tan* 17
where /\’;p tan* M = @j:o.up /\j (ker dn)" ® /\kij (m*tan.A")*; if the map =
is represented locally as a projection (x1,. .., %, t1, ..., bpn)— (X1, . . . %)

then for every point a € .// we have ( /\];p tan* 1) = spamng<p {dey A dt;};

Using the contraction operator e between a vector field and a differ-
ential form one obtains a coordinate-free description of the subbundle
/\]ip tan* 1/ as follow:

/\k tant A — {a) c /\k -y for all vy, v1,...,v, € sect(ker dn)}
SI’ S —_ S

vpevie...ev,em=0

Note that the tangent bundle of each submanifold-fiber 7~1(y) is exactly
the restriction (kerdn)|n,1(y), thus to discriminate smooth forms in ./ one
looks in local trivialization of the submersion 7z and counts how much terms
dt, directed along the fibers are present in wedge product. Thus if one
considers the fibers of = as particular directions (if R >S are strata of a
pseudomanifold then by condition [1.1-C4] the map #|: TsNR — S is
submersive and its fibers can be thought as a description of how the stratum
R approaches S) one is lead to the following definition:

DEFINITION 3.1 (Perversity condition). Let n: 7/ —. V" be a submer-
ston between two smooth manifolds; a smooth j-form we Q1] over 1
has perversity pe{0,...,dimA — dim N} with respect to © if for every
(p+1)-uple of smooth vector fields vy, v1, . .. ,v, € E[.//]tangent to fibers of
7 (i.e. smooth sections of ker drn) we have:

vevie.. . ev,em=0.

For example consider the projection n(x,t) =2« as in figure 3; every 0-
perverse form with respect to =« is of the form f(x, t)dx. Heuristically, if ¢
is an embedded smooth 1-chain then a 0-perverse form can only detect
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fib f
tbers o 1 what can be evaluated by

a smooth 1—chain a 0—perverse form

U

Fig. 3. — Perversity condition.

horizontal infinitesimal elements of ¢ (i.e. elements not parallel to the
fibers of n):

Now let (2, ', {(Ts, 7, pg) } s ;) be an n-dimensional controlled pseu-
domanifold as in definition [1.1] and p a fixed perversity for X by hy-
pothesis [1.1-B2], the set X" — .4,_s =9 ¢, is dense in .4~ and this implies
by [1.1-B1] that the relation S < 4, is true for every S €./". Then, again by
definition [1.1-C4], the map 7g|: Ts N L rg—>S is a smooth submersion
and this heuristically justifies the following:

DEFINITION 3.2 (Perverse and Intersection differential forms; [BRY]
def. 1.2.5, [BHS] chap. B). Let (2, ", {(Ts, s, ps)}sc.,) be a controlled
pseudomanifold of dimension n, p a fixed perversity for XL and let
j €40, ...,n}; asmooth differential j-form we Q'[9 ‘reg] 18 called p-perverse
for X iff YSeJ and Va €S there exists an open neighborhood U for x in
Ts such that o has perversity P oqs) With respect to the submersion
ns|: UN oS (see definition [3.11). The R-vector space of the intersec-
tion j-forms over I relative to perversity p is defined as:

Iij[.‘I‘] = {wer[.%}eg] both w and dw are p-perverse for <1}

TS1 TS Sﬁ”

Fig. 4. — Working in the regular part.
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Figure 4 shows what is happening in the singular torus of figures 1 and 2; we
work only in the regular part using the additional data of the control
structure. The restrictions of the retractions ”50|Ts0ﬂ<1'w,g and 7ZS1|T31 o
originates the directions toward Sy and S; that are smooth submanifold by
submersiveness (since Sy is a point such direction is a whole neighborhood,
and for S; they are represented by immersed lines, the «normal directions»
toward Si). Thus the geometric discrimination of definition [3.2] can be
applied as in figure 3.

Since definition [3.2] is purely local in .2 and each open U of .2 cano-
nically inherits a controlled pseudomanifold structure we are lead to the
following:

DEFINITION 3.3 (Intersection differential forms complex). The com-
plex of sheaves of intersection forms of perversity p on the controlled
pseudomanifold X is the subcomplex of a*Q_?I-MJ (0: Xyog— L) defined by
the assignment U—1,Q°[U] for every U open in 1.

REMARK 3.4. We are working with special differential forms defined
over the regular part of the pseudomanifold and not with stratified forms
(i.e. a smooth form on every stratum); see in particular [PFL] pp. 68-69 and
the paper [BF] for a complete analysis of the latter approach.

REMARK 3.5 (Invariance). The complex I,€°,- is invariant under con-
trolled isomorphisms [1.7] of .2~ due to the fact that such maps are dif-
feomorphism over the regular part .., and preserves tube retraction and
fibers; if a smooth manifold .7/ is controlled trivially then I,Q°[.//] clearly
coincides with the de Rham complex Q°[.#/]. Theorem [7.1] and theorem
[2.4] implies that for every pseudomanifold . the cohomology of 1,2°[.%]
is naturally isomorphic to the intersection cohomology and hence it is a
topological invariant of .2 (see [BOR]), i.e. it depends only on the under-
lying topological structure and not on stratification or control data. This is
highly not trivial even for a manifold since it can be unnaturally stratified
in a very complex way.

4. The softness of the complex I,Q%,.
The complex of smooth differential forms Q°, over a smooth mani-

fold is the main example of a complex of soft sheaves; this is usually
proved using the fact that every sheaf of modules over a soft sheaf of
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rings with units is soft, that Q°, is a ¢°/-module and that ¢, is a soft
sheaf; the latter requires the existence of smooth partltlons of unity
and in order to mimic the same procedure in singular spaces we need ad
hoc partitions.

Over a controlled pseudomanifold (2, {(Ts,7s,ps)}gc) One can
work with real controlled function (see [PFL]):

(;cnt

-

Thus a controlled function must be constant along the retraction-fibers of
every germ of tubular neighborhood; dealing with germs is fundamental to
prove theorem [4.1].

To show that 1,Q%, is a complex of ¢'3"-modules It is an open set U in
2, an intersection j-form w e Ip.Qj[U ]and a controlled function f € ¢%"; w
can be seen as a particular smooth form in the differential manifold
UNW e and thus multiplied by the smooth function f| Una - 1t 18 easy to
show that fw:=f] Una @ 18 indeed p-perverse for U (it respects all p-
perversity condition even without any hypothesis about f). The exterior
derivative d(fw):= d(f|ynq, @) = dflynq,) A @ +Flyng,,do is p-per-
verse due to the fact that the latter is true by definition for dw and that by
controlledness d(f|ynq,,)=4(|ynq,,)odns for every stratum S in U; thus
ved(flyng, ) Aw is automatlcally zero for every v vector field over
UNQ g and tangent to ng-fibers. This implies that fo € I, Q'[U]and, since
the restriction maps of such sheaves are indeed restrictions of forms and
function, 1,Q°%-is a ¢*)-module; to continue, we recall the following result
due to Verona ((VER] pp.8-9):

an open neighborhood U for S : Vee Ts N U, frg(x) = f(x)

f is continuous, f|gis smooth for each S €./"and there exists }

()mt

THEOREM 4.1. Let .2 be a controlled pseudomanifold; then every open
cover of X" has a subordinated partition of unit composed of controlled
Sfunctions.

Let K be a compact of 4" and f € ¢/'[K]; by metrizability of 4" the
section f over K can be extended to a controlled function f € ¢**[U]over an
open set U2 K. So if {y;,w, g} is a controlled partition of unit sub-
ordinated to the open cover {U, 2" — K} the controlled function fy; is a
well-defined element of )[4 ] extending f. By this we can conclude that:

COROLLARY 4.2. The sheaf 6"} of controlled functions is soft.
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COROLLARY 4.3 (Softness). If % is a controlled pseudomanifold and p
1s a perversity then the complex 1,£2%- is a complex of soft sheaves.

The softness of the complex of intersection forms allows to make local
computation required in Deligne’s axioms without explicit reference to total
derived functors (in particular without using injective or flabby-type re-
solutions).

5. Intersection homotopy operator.

In order to accomplish easily computations over cylinders and cones
one needs to develop a Poincaré operator for singular case; let
(X, {(Ts,ms, ps)}tse ) be a controlled pseudomanifold of dimension »
and an open segment /= Ja,b[ where a generic point ¢y €/ is fixed; we
denote the ty-section and projection respectively with s: 4 — .9 x I and
XX — .

A perversity p associated to the canonical filtration {4';},_, , induces a
perversity for & xI with respect to {1}, ,:

Xy xI (XyaaxI=XLpox]) XugxI ...... L x T oL o x 1
-(I‘n (-(I‘n—l = 47'\71,—2) -(I‘n—B ------ -(I‘n—k ------ -(1‘0
D) Pa) =P P3 e P e Pw

The latter is due to the fact that @ x I, decomposed canonically as
in [1.5], has no 0-dimensional stratum, so it is no use to assign p .y
for codimension n+1 (just recall that codimensions of X",,_j in . X and
of Xy xIin X x I are the same); such argument can be inverted
and I can be easily replaced with any boundaryless smooth manifold
(e.g Rl).

The morphisms s e n induce two pullbacks over the complex of differ-
ential forms defined over the regular part:

*

) 7 ° S o .
Q-q ‘)'eg - ‘Q-(I‘regXI - Q(I .reg’
next goal is the extension of these morphisms to the complex of intersection

forms:

LeEmMmA b5.1.  The pullback operations for smooth forms over the regular
part of X and X x I are compatible with every perversity p and induce
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two pullbacks on the intersection forms complex:
n QY — 1%,
§° Qg — 120

Proor. By construction, each k-codimension stratum S of .2 with tube
ng: Ts — S corresponds to the k-codimension stratum S x I of &~ x I with
tube g x id;: Ts x I — S x I. So, after choosing a point (x,t) € S x I and
an open neighborhood U x J C Ty x I for (x,t) the only vector fields over
the regular part, parallel to fibers of zg x id;, are the following:

0,0) : (U x )N (L yeg x I) = tan(U N Dyeg) ®tan

where the field v: U N Xeg—tan(U N L) is parallel to fibers of
78| 15 I other words, every vector in a smooth point of the composed
tube must have a component tangent to the fiber of original tube and the
other must be zero.

Suppose now that we I,,Qi [Z]; @ is p-perverse and if (vg,0),
(01,0), ..., (Vpoasxn), 0) are vector fields parallel to fibers of the tube T's x I
of a stratum S x I > (x,%) evaluating inner products and the latter ob-
servation gives:

(" )i 71 ((0o(), 0),. . ., Wp(eoasx (@), 0), =) = w1 (09(X), - . ., Yp(eods <), —) =0.

In the same way, if w € II,Q7 [X x I1and vy, v1, . . ., byods) are vector fields
parallel to fibers of the tube T's for a stratum S 5 « then:

(S*w)[x](vo(%), e 7vp(codS)(90)7 -) = w[(x,to)]((vo(x); 0),..., (vp(COdS)(m)7 0),-)=0

Since by hypothesis even dw is p-perverse one obtains ds*=s*d and
dn* =7*d; the same reasoning can be done for the exterior derivatives and
consequently s* and 7" are well defined over intersection forms. O

It is possible to define an integration operator over vertical fibers of
X x I, following mutatis mutandis the standard construction over smooth
manifolds; we begin to work with smooth forms defined over 4., x I, the
regular part of the pseudomanifold .2 x I (recall that [ is an open segment
in R and t; a chosen base point). So if we Q[4 ‘reg < 1] one defines
Go e QL gy ¥ 1] as:

. 0
@ o) p(V1,...,0j1) = J Ol 1] <§,01,---,vj1>df
[t()',t]
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for every point (x,t)€ Xy xI and every (j—1)-uple of tangent vectors
vi,...,0_1 € t(mx X'yeg ® tanyd (as usual 0 is by definition zero over 0-
form) Where ; 1s the standard tangent vector of 7 C R. This is the homotopy
operator of Pomcare and the following result is also a classic one (see [BT]
pp. 33-35), adapted in this case to the smooth manifold X, xI:

THEOREM 5.2. The following homotopic formula holds for every dif-
Sferential j-form w over Loy x I, the regular part of X xI:

Ao — 0 dw = (- 1Y ((s1)'w — ).

In what follows, we describe how the latter operator naturally extends to
intersection forms;

THEOREM 5.3 (Intersection homotopy operator). The Poincaré homo-
topy operator 0° is compatible with p, i.e. the following relation continues to
hold over 1, @[ xI] for each intersection j-form w:

Ao — 60" dw = (- 1Y ((sn)'w — w);

m particular, 6° realizes an algebraic homotopy between the endomorph-
isms (sm)* and idy, ooy n [ QLY xI]:

QI x 1) —L> 1,12 <]

07 .
S e
¥
gIt1

1,12 x I] == 1,00 (2 x 1]

ProoF. Since every intersection form is a differential form over the
regular part (recall that I,Q%; C a.Q%)- XI), by [5.2] it suffices to show that
& respects perversity; we proceed Wlth a decreasing induction starting
from n+1 (the dimension of X" xI):

>IQ”%><I—>IQ”“9”><I} -0
o LT ) I —— I Q" (2 ]| —— L, Q" 2 xI] o )

It must be shown that 6‘7'(11,.(2"[&?[‘ x1I]) C I, '[9 xI]; suppose then
we [, Q[.4 xI]and consequently that wis p-perverse. It is easily seen that
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¢ wis p-perverse (just recall how inner product works; in a simpler way note
that if w was f(x,t,Ddx;, A. .. Adaj, At A. . Adt;, Adl in R“™ xR then
0" o would be ( [f(x,t, L)AL)daj, A. . . Aday, Adt;, A. . . Adt;,: integration
cannot increase perversity).

Induction is needed to show that d#w is p-perverse and one can proceed
as follow:

— if j=n-+1 then the smooth homotopy relation gives dé(n + 1) w =
=(—1)"*! ((sm)*w — w); the inductive start point is settled noting that (sz)*
respects the perversity of o since d(sm), (v, ) = (v,0) and w is p-perverse;

— if j<nm+1 then dw is p-perverse and by inductive hypothesis ¢'*!
respects perversity; smooth homotopy formula allows to conclude.

This ends the proof of the theorem.

6. Local computations.

In this section we perform some basic computations on cones and cy-
linders built from a given pseudomanifold (which can be found also in the
paper [BHS], Chapitre C: Calculs locaux, page 230); if .2 is a controlled
pseudomanifold of dimension % by local structure theorem [1.8] every point
x belonging to a k-dimensional stratum S of 2~ admits an open neighbor-
hood U in @ isomorphic (as controlled space, [1.7]) to R™* % con®/ (where
/" is a compact pseudomanifold of dimension k—1) such that the pair
(U NS, x) is mapped to (R"*k,vertex). Since as noted in remark [3.5] the
complex of intersection forms is invariant under controlled isomorphism
this will suffice.

The following theorem is well-known in the smooth case ([BT] p. 35) and
its proof in the singular case proceeds along the same line:

THEOREM 6.1 (Cylinders). Let X be a controlled pseudomanifold and p
an associated perversity; then the pullback s*: I,Q°[ X" xI]— [,Q°[ 4]
mduces an isomorphism for each cohomologic R-vector space:

H(I,Q°[ 2 xI]) — H(L,Q2°[2]) vj € {0,...,dimQ}.

ProoF. As in the smooth case ns =idq and consequently s*z*=
=1dy, [0 7; moreover, by theorem [5.3], 0° realizes an algebraic homotopy
between 7*s* and idy, oo «73. Thus s* is a quasi-isomorphism between the
two given complexes. O
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Roughly speaking, theorem [6.1] allows to represent a cohomology class
of the cylinder .2 x I as a class of one of its horizontal slice 4" x {t}; it will be
useful in theorem [6.4] to move classes between different slices.

To deal with the cone con®/ is essential to recall that, as described
in [1.6], its control structure makes heavy use of the control over
¢ x]0, +o0[ and that:

the vertex is the only stratum of con® with max codimension (i.e.
dim.y+1) and the corresponding retraction has only one fiber,
namely Tyer = 7 x[0, el

Note that every perversity p over a cone con’/” (stratified and con-
trolled via its base) naturally induces a perversity p over its cylinder
¢~ x 10,400 and its base ¢~ (just discard the perversity for the vertex
DP(dim.r+1) =P (cod vertez)); the contrary is obviously false.

The crucial ingredient is the following immediately proved lemma:

LEMMA 6.2. Let .1/ be a smooth manifold, we Q[.//] a differential
form and fix an integer I <j; then if the inner product of w with any l-uple of
vector fields over 1/ is always zero we can conclude that w vanished. In
other words:

~Vo1,...,00 € E[NH] vie...evpew=0=— w=0.

REMARK 6.3. It is worthy to remark that if we insert via inner product
[>] fields into a j-form we automatically obtain zero by definition, so the
latter relation doesn’t give any hint about the nullity of the original form.

As in the paper [BOR] the key step to apply the axiomatization of
Deligne is to understand the cohomological relation between a cone and its
base as follow:

THEOREM 6.4 (Cones). Let_ be a compact controlled pseudomanifold
of dimension k; endow the cone con®” with the canonical control structure
from its base ¢ as in [1.6] and fix an associated perversity p for con®y.
Then the morphism s* induces the following isomorphisms:

) J oF e -
H](IP.Q.[COHOJ)]) ~ { W,/ 1‘f J.Sp(k+1)>
0 if > Pger1)-
Proor. Using the previous remarks and lemma [6.2] we obtain the
following relation between intersection forms over the cone con®y” and
forms over the associated cylinder ;7 x R>:
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o € L, x R™] and:
L [con® 1= {w € QL 1y, ><R>°} ifj >py.q) then3e > 0: cu|, 08[ =0
if j = pgey1) then 3e>0: da)|/w 4=0

To prove this, we begin to note that @ and dw are in particular p-perverse
for_/ x R Ge.we I,,Qi [/ x IR>°7) since the control structure of the cone
is an extension of the one of its cylinder (examples [1.5] and [1.6]); this is not
enough, since there are the perversity conditions over the tube for the
vertex of the cone Ty := " %[0, e[ with ¢>0.

This means that for every (p..1)+1)-uple of vector fields vy, vy, . . ., vy,
defined in Tyert N7,y x 10, ¢[ and tangent to fibers of 7+ the following
relations must be satisfied:

vevie. ep, en=0,
vevie. e, ~edo=0.

Next, recall that since the fiber of 7., is by construction the regular part
of the whole retracting neighborhood (see the remark in [1.6] and figure
5), the latter conditions must be verified for every vector field; now lemma
[6.2] allows to conclude: if w| Zrr 10l isa smooth j-form that becomes zero
after inserting pg1)+1 vector fields over 'y, x]0,e[ and j > pgiq)+1
then w| Zroxl0e =0 and consequently dw| I = 0. On the contrary, one
has just to impose a condition over dw only 1f j +1=py,1+ 1, requiring
that do|, ., = 0; this is enough taking into account remark [6.3].
Concludmg, one is able to deal with forms over a cone just working over
its cylinder plus some nullity condition nearby the vertex since the vertex is
the only k+1-codimensional stratum and its associated retraction fiber is

Fig. 5. — The control near the vertex.
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the whole neighborhood T'yert N yeq % R™": every vector field approaches
the singularity.
We now use this characterization to prove the theorem, analyzing se-
parately the two cases:
- thej > p. 1) case —
Let weIij [con° ] a cocycle; by the latter, the following relations
holds:

we L1 x R™]
w=0 over ,,x]0,¢ (for some &>0)

So w is just a closed intersection form over the cylinder, zero nearby the
vertex; we are going to show that w is indeed a coboundary moving the
cohomology class via theorem [6.1] nearby the vertex, where some nullity
condition holds. For this purpose, choose a point ay € ]0, &[ and denote with
s*, 7 and 0° the agsection, projection and homotopy operator related to ag
and /" x R>? as in section [5]. The homotopy relation d0w = (— 1)(j+1)a) is
true in I,,.Qj [/ x R>%] due to the fact that wis a cocycle and 7n*s*w =0 since
w can be pushed in a slice where it is zero; thus to obtain a primitive for win
1,Q2°[con® 7 ]it is enough to show that @w € I, [con°]. By construction
®’w lives» over the eylinder, but it is actually an intersection form be-
longing to the cone due to the fact that j>p,;) and so w=0 over
< regx]0, ¢[. Finally Vwis a primitive of our cocycle that becomes a co-
boundary, trivializing the associate cohomology:

H(I,Q%con° /D =0 Yj>pge.y.

—thej < pg, 1) case -
Again, using the initial characterization, we get:

I, QTcon° ] = L,/ x R™] if j < Pgesy)
I, Qcon° /1 Nkernel d = L[/ x R>1 N kernel d if j =pey

The former relation is trivial and to achieve the latter it is enough to observe
that if j = p(. 1) the compatibility between w and vertex tube retraction
requires the vanishing of its exterior derivative nearby; this is trivially
satisfied if dw=0. Since only closed forms are needed to compute coho-
mology up to level j < p. ) the vertex gives no additional constraint and
the cylindrie computation [6.1] allows to conclude:

H (1,0 [con® /) = WA, 217 x R7') = HLQLD V) < Pus
O



Intersection differential forms 91

Note that cohomology done with intersection forms is not homotopy
invariant; for example, consider the contractible space con°(S' xS') and
fix a perversity p such that p(3)=1 (this is enough since such space has
only a singular point with codimension 3, the vertex). Theorem [6.4] im-
plies that:

H' (L, Q°[con°(S x S1)]) = H (I, Q°[S" xS']) = H})p (S?xS!) =~ R x R

7. Verification of Deligne’s axioms.

We are now ready to show that I,0°,- satisfies Deligne’s Axioms ([2.2])
and then by theorem [2.4] it has the same local cohomological properties of
I,C?; this will follow the results of the previous sections about the local
structure of a pseudomanifold ([1.8]), softness of I,Q2%- ([4.3]) and cylindric-
conic computations ([6.1], [6.4]).

THEOREM 7.1. Let 4 be a controlled pseudomanifold and p be an
associated perversity; then the complex of sheaves 1,Q%- of intersection
forms satisfies Deligne’s axioms relative to perversity p and constant sheaf
Ry

Proor. Let n be the dimension of .%; boundedness and triviality in
negative degree are obvious by definition; the first axiom follows easily
from the fact that .4, is a smooth %-manifold and so that an intersection
form is just a differential form on .4",,; Poincaré Lemma allows to con-
clude.

To simplify the remaining verifications, we set S;:= J{S /| dim S =j}
and we use the notation introduced in section [2]; it is necessary to show
that:

A (L2y), =0 if j>p(k)

%fﬁ'(l,,sz;,ml) i)%ff(mk*l,,g;,k)x if j<p(k).

X

VIC, Vo eSn_k {

Taking into account the remark [2.3] and the softness result of [4.3] for the

complex 1,Q°, the diagram #7(1,Qy, ), — %7 (Ri;.1,Qy,), can be re-
placed by the following equivalent one:
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lim H/(I,2°[V]) = lim H/(I,Q'[V—-S,_])

xeVea xeVea

where the direct limit can be done over the directed set of trivializing
open neighborhoods for X over x and the arrow is simply the restric-
tion map; this simple observation allows to avoid any explicit reference
to total derived functors and consequently to apply theorems [6.1] and
[6.4] with ease. Let V be a trivializing neighborhood of x and let
V=5 R < con®y be a controlled isomorphism (by the local structure
theorem [1.8]), where ./ denotes the controlled compact link for S,,_j. in
2 (S,,_r has dimension k—1); we therefore can form the following com-
mutative diagram:

L [V] — = T,Q° [R** x con®.¥] ———1,Q°[con°.Z]

ﬂ i i

S\
OV = Spp] —= 1,0 R x (con® L — o)] — 1,Q°[con®.L — o] ——= [,Q°[.L]

(we need here to know that any perversity works with codimension, and
this implies that a p relative to R" ™" x con®/ induces a perversity for
con®y’). The commutativity of the diagram is implied by the fact that ver-
tical arrows are restrictions and the remaining ones are induced by inclu-
sions and every horizontal arrowis a quasi-isomorphism of complexes of IR-
vector spaces due to the computation over cylinders; the following rea-
soning allows to conclude:

— if j > p(k) then the first row gives the result after a direct limit;

— if 7<p(k) then the dashed arrow is a quasi-isomorphism of R-
modules complexes till order p(k) (by theorem [6.4]) and we deduce that the
double arrow is a quasi-isomorphism up to level p(k).

Note that the isomorphism [2.4] is obtained in an abstract way and ab-
solutely no hint is given on its concrete definition; however in the paper
[BHS] pp. 223-224 a procedure to perform integration of perverse forms
over perverse chains (with some additional conditions) is discussed in detail.

8. Mayer-Vietoris sequence and examples.

Here we collect some lemmas that help in computation of intersection
cohomology via differential forms.



Intersection differential forms 93

DEFINITION 8.1 (de Rham Intersection Cohomology). Let 4 be a
controlled pseudomanifold and p a perversity for X; the j-th module of de
Rham Intersection Cohomology of 4 relative to p is:

L H)p(2) = TH(2;1,Q%) = BHRI(X;L,Q%) = HI,Q ().

To identify the 0-th cohomology module note that an intersection 0-form
fe II,QO[XI is a smooth map defined over .7, such that its differential df
is a p-perverse 1-form; if f is a cocycle then df = 0 and thus II,HODR (7) is
the vector space of the locally constant maps defined in X,

LEmMMA 8.2. Let . be a controlled pseudomanifold and p a fixed per-
versity; then the 0-th module of the de Rham intersection cohomology
computes the number of connected components of the reqular part of 4, i.e.:

LA (@) = [R  with J := {connected components of .4}
jed

THEOREM 8.3 (Mayer-Vetoris sequence). Let X be a controlled pseu-
domanifold, p a perversity and U,V open subsets of X such that &= UUV;
then the following diagram of complex of R-vector spaces is exact:

0—LQ (2] - L U] o L2 V] L L, U N V]I—0
T@S‘Q""U

resq v
striction morphisms.

where a:= { } and f:= [resy unv — resy unv] are induced by the re-

Proor ([BT] pp. 22-23). The exactness at first two nodes is easily
proved as in the smooth case; to check the surjectivity of ff one can proceed
as follow: let w € I,,Qi [U N V] and using theorem [4.1] choose a controlled
partition of unity {y,wy } subordinated to the open cover {U,V} of 4. As
shown in section [4], by controlledness, the forms (yy)| yp@ and (w )|y @
belong to I[N V] and as in the smooth case they can be extended by
zero to elements wy and wy of Ip.Qj[U land Ip.Qj[V] respectively (note that
to obtain a formin U one must multiply for yy and viceversa). It is clear that
B maps (wy, —wy) € LATU1® L, 2[V]to w.

For a non trivial example of computations consider the topological
space S'x> T? where T° =S'xS'xS! is the 3-torus and Y 7% :=

= % is the suspension of T2 (see also [BOR] pp. 35-39 for a

similar computation using intersection homology); such space is a con-
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trolled pseudomanifold since S and 7° are smooth manifolds trivially
controlled and a suspension can be controlled doubling the cone con-
struction. The singular part is the disjoint union of two S! and it is enough
to fix a p€{0,1,2} to assign a perversity relative to the 1-strata; by the-
orems [6.1], [6.4] and remark [3.5] the following relations hold:

I, Hp (1- 1,10 < 7%) = T, Hiyp (T%) = Hip (%) = (R, R, RY, R,0,0,....)
L Hy (con°T?) = (R,0,0,0,0,...)

LiHg (con°T?) = (R, R?,0,0,0,...)

LHpp (con°T?) = (R, R* R?,0,0,...)

Now we can use Mayer Vietoris to compute for example I,Hy, (3 7%)
as follow: consider > 7% as con*T? Ucon™T® where con™T?:= l*{}}li}?;,

con~ T8 .= % and con™ T Ncon T% =]1—1,1[ xT?; by Mayer-

Vietoris theorem the following diagram is exact:

0
.

LHYR (Y T%) — = ReR=—=R
LHpR (X T%) —=R3 @ R3 —= R3
LHR (Y T%) — R3 @ R =—=> R3
LHpg (357°) 0 R

S

LHpR (Y T%) ———0

A simple dimensional count is not enough to identify the cohomology of
3" T?, however in this case every double arrow = is clearly an epimorph-
ism: in fact the map IzH]f)R (con™T3) — IZH’I“)R (1-1,1[ x %) is an iso-
morphism if k€ {0,1, 2} as shown in the proof of theorem [6.4] and hence by
construction of the Mayer-Vietoris sequence from [8.3] the maps = are
epimorphism. Thus by exactness the dimension of every unknown module
can be computed and a similar reasoning can be made for the other per-
versity giving the following results:

LHpr (X T°) = (R,0,R*, R®, R,0,0,...)

LHpr (X T%) = (R, R%,0,R%, R,0,0,...)
LHpp (2 7%) = (R, R?,R?,0,R,0,0,...)



Intersection differential forms 95

Note that since the complex I,Q°[ T3] computes the intersection coho-
mology the Poincaré duality for complementary perversities must hold.

Instead of using again Mayer-Vietoris sequence to finally compute
I,H} (S’ 3" T?) one can use the following theorem:

THEOREM 8.4 (Partial Kiinneth formula). Let .7/ be a compact smooth
manifold without boundary, X a controlled pseudomanifold and p a
perversity; then there is an isomorphism:

Hpg (/) @ LHpR (4) — LHpR (7 x 2)

Proor. The manifold ./ has a finite good cover (i.e. every intersection
of opens of the cover is empty or diffeomorphic to R"™; see [BT] pp. 42-43)
since is compact; moreover, being ./ controlled trivially, the space %/ x &
can be controlled as in example [1.5]. Consider the projections
M x &L @ and the following map:

¥ HYp (/) x LHLL () —LHEE (7 x Q)
(0, )= 7w A p*u

To show that 7n*w A p*u is p-perverse recall that the retraction of
a tube #Z xTs of a stratum #/ xS is id, xng; hence if
(my,...,m;,21,...,2;,t1,...1) are local coordinates for .7/ x (T's N .9 yey)
with (f;,...t;) as fiber coordinates for the submersion 7g| then
m'w=fdm, A...dm;, for some smooth function f and hence the
perversity condition is clearly depending only on the perversity of u
due to the definition of A. In a similar manner, d(z*wAp*u) =
=n'doAp'u+ (— 1) w A p*du is p-perverse since the same is true
for du and this implies that 7*w A p*u is indeed an intersection form.

One has to check that if wis a smooth closed a-form, a is a smooth (¢ —1)-
form, u is a closed intersection b-form and f is an intersection (b—1)-form
then:

(@ +da) Ap (u+dp)—m'wApu=dr  for some t€ L,Q" " (/ x X)

This holds since for example dz*a A p*u = d(@*a A p*u) (u is by hypothesis
closed) and 7*a A p*uis an intersection form being x of the same type; hence
¥ is a well defined bilinear map inducing consequently a linear map in
tensor product.

To show that ¥ is an isomorphism we follow the proof in Bott-Tu ([BT]
pp. 47-50) with the same Mayer-Vietoris technique working with a good
cover of the manifold .7/
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— if #/ = R™ then the Kiinneth formula is true since by theorem
[6.1]:

Hpp (R") @ LHpg (4) = LHpg () — LHpp(R™ x Q)

— if it is true for U, V and U NV then it is true for U U V; just use
controlled partition of unity and Mayer-Vietoris for intersection cohomol-
ogy;

— conclude with an induction on the cardinality of the finite good

cover.
O

The partial Kiinneth formula allows to achieve the following results:

LoHp (S'% 3 T°) = (R, R, R?, R, RY, R,0,0,...)
LHpR (S T%) = (R, R, R?, R? RY, R,0,0,...)
LHpg (S 7%) = (R, R, R%, R, R, R, 0,0,...)

Note again the Poincaré duality between I\Hpg(S'x> 7%) and
LH} (S™x 3" 7%) with respect to complementary perversities and the
autoduality of I Hpyp (S™x - T%).
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