@article{RSMUP_2004__112__103_0,
author = {Galanis, George N.},
title = {Differential and geometric structure for the tangent bundle of a projective limit manifold},
journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
pages = {103--115},
year = {2004},
publisher = {Seminario Matematico of the University of Padua},
volume = {112},
mrnumber = {2109955},
zbl = {1121.58007},
language = {en},
url = {https://www.numdam.org/item/RSMUP_2004__112__103_0/}
}
TY - JOUR AU - Galanis, George N. TI - Differential and geometric structure for the tangent bundle of a projective limit manifold JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2004 SP - 103 EP - 115 VL - 112 PB - Seminario Matematico of the University of Padua UR - https://www.numdam.org/item/RSMUP_2004__112__103_0/ LA - en ID - RSMUP_2004__112__103_0 ER -
%0 Journal Article %A Galanis, George N. %T Differential and geometric structure for the tangent bundle of a projective limit manifold %J Rendiconti del Seminario Matematico della Università di Padova %D 2004 %P 103-115 %V 112 %I Seminario Matematico of the University of Padua %U https://www.numdam.org/item/RSMUP_2004__112__103_0/ %G en %F RSMUP_2004__112__103_0
Galanis, George N. Differential and geometric structure for the tangent bundle of a projective limit manifold. Rendiconti del Seminario Matematico della Università di Padova, Tome 112 (2004), pp. 103-115. https://www.numdam.org/item/RSMUP_2004__112__103_0/
[1] , On a type of linear differential equations in Fréchet spaces, Annali della Scuola Normale Superiore di Pisa, 4, No. 24 (1997), pp. 501-510. | Zbl | MR | Numdam
[2] - , A Floquet-Liapunov theorem in Fréchet spaces, Annali della Scuola Normale Superiore di Pisa (4), 27 (1998), pp. 427-436. | Zbl | MR | Numdam
[3] , Projective limits of Banach-Lie groups, Periodica Mathematica Hungarica, 32 (1996), pp. 179-191. | Zbl | MR
[4] , The inverse functions theorem of Nash and Moser, Bull. of Amer. Math. Soc., 7 (1982), pp. 65-222. | Zbl | MR
[5] , On a differential structure for the group of diffeomorphisms, Topology, 46 (1967), pp. 263-271. | Zbl | MR
[6] - , On differential structure for projective limits of manifolds, J. Geom. Phys., 29, no. 1-2 (1999), pp. 35-63. | Zbl | MR
[7] - , The convenient setting of global analysis, Mathematical Surveys and Monographs, 53 American Mathematical Society. | Zbl | MR
[8] , Infinite Dimensional Lie Transformation Groups, Lecture Notes in Mathematics, 427 (1974), Springer-Verlag. | Zbl | MR
[9] , Topological Vector Spaces, Springer, Berlin, 1980. | Zbl | MR
[10] , Maps and forms on generalised manifolds, St. Cerc. Mat., 26 (1974), pp. 133-143 (in romanian). | MR
[11] , A de Rham Theorem for generalised manifolds, Proc. Edinburg Math. Soc., 22 (1979), pp. 127-135. | Zbl | MR
[12] , Connections on tangent bundles, J. Diff. Geom., 41 (1967), pp. 235-243. | Zbl | MR






