@article{RSMUP_2003__109__217_0,
author = {Corner, A. L. S. and G\"obel, R\"udiger},
title = {Small almost free modules with prescribed topological endomorphism rings},
journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
pages = {217--234},
year = {2003},
publisher = {Seminario Matematico of the University of Padua},
volume = {109},
mrnumber = {1997988},
zbl = {1148.20308},
language = {en},
url = {https://www.numdam.org/item/RSMUP_2003__109__217_0/}
}
TY - JOUR AU - Corner, A. L. S. AU - Göbel, Rüdiger TI - Small almost free modules with prescribed topological endomorphism rings JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2003 SP - 217 EP - 234 VL - 109 PB - Seminario Matematico of the University of Padua UR - https://www.numdam.org/item/RSMUP_2003__109__217_0/ LA - en ID - RSMUP_2003__109__217_0 ER -
%0 Journal Article %A Corner, A. L. S. %A Göbel, Rüdiger %T Small almost free modules with prescribed topological endomorphism rings %J Rendiconti del Seminario Matematico della Università di Padova %D 2003 %P 217-234 %V 109 %I Seminario Matematico of the University of Padua %U https://www.numdam.org/item/RSMUP_2003__109__217_0/ %G en %F RSMUP_2003__109__217_0
Corner, A. L. S.; Göbel, Rüdiger. Small almost free modules with prescribed topological endomorphism rings. Rendiconti del Seminario Matematico della Università di Padova, Tome 109 (2003), pp. 217-234. https://www.numdam.org/item/RSMUP_2003__109__217_0/
[1] , Abelian groups without elements of finite order, Duke Math. J., 3 (1937), pp. 68-122. | MR | JFM
[2] , Sur des décompositions directes paradoxales de groupes abéliens sans torsion, Abelian Group Theory, Proceedings, Honolulu 1982/83, Lecture Notes in Mathematics 1006 (Springer, Berlin, 1983), pp. 358-361. | Zbl | MR
[3] , Every countable reduced torsion-free ring is an endomorphisms ring, Proc. London Math. Soc., 13 (1963), pp. 687-710. | Zbl | MR
[4] , Endomorphisms rings of torsion-free abelian groups, Proceedings of the International Conference on the Theory of Groups, Canberra 1965 (Gordon and Breach, New York, 1967), pp. 59-69. | Zbl
[5] , Additive categories and a theorem of W. G. Leavitt, Bull. Amer. Math. Soc., 75 (1969), pp. 78-82. | Zbl | MR
[6] , On the existence of very decomposable abelian groups, Abelian Group Theory, Proceedings, Honolulu 1982/83, Lecture Notes in Mathematics 1006 (Springer, Berlin, 1983), pp. 354-357. | MR
[7] - , Prescribing endomorphism algebras, a unified treatment, Proc. London Math. Soc., 50 (1985), pp. 447-479. | Zbl | MR
[8] - , Every cotorsion-free ring is an endomorphism ring, Proc. London Math. Soc. (3), 45 (1982), pp. 319-336. | Zbl | MR
[9] - , Every cotorsion-free algebra is an endomorphism algebra, Math. Zeitschr., 181 (1982), pp. 451-470. | Zbl | MR
[10] , Set theoretic methods in homological algebra and abelian groups, Les Presses de l'Université de Montréal, Montreal 1980. | Zbl | MR
[11] , Cardinal restrictions for preradicals, Abelian Group Theory, Contemporary Math. 87, Providence, 1989, pp. 277-283. | Zbl | MR
[12] - , Almost Free Modules, Set-theoretic Methods, NorthHolland, 1990. | Zbl | MR
[13] , Abelian Groups, Vol. I and II, Academic Press, 1970 and 1973.
[14] , Some combinatorial principles for solving algebraic problems, Infinite length modules, Trends in Mathematics, Birkhäuser Verlag, Basel, 2000, pp. 107-127. | Zbl | MR
[15] - , Indecomposable almost free modules-the local case, Canadian J. Math., 50 (4) (1998), pp. 719-738. | Zbl | MR
[16] - , Endomorphism rings of modules whose cardinality is cofinal to v, Abelian groups, module theory, and topology, Marcel Dekker, New York, 1998, pp. 235-248. | Zbl | MR
[17] P GRIFFITH, ]n-free abelian groups, Quart. J. Math. (2), 23 (72), pp. 417-425. | Zbl | MR
[18] , Set theory, Academic Press, New York, 1978. | Zbl | MR
[19] , On uncountable abelian groups, Israel J. Math., 32 (1979), pp. 311-330. | Zbl | MR
[20] , On endo-rigid strongly ]1-free abelian groups in ]1 , Israel J. Math., 40 (1981), pp. 291-295. | Zbl | MR
[21] , A combinatorial theorem and endomorphism rings of abelian groups II, Abelian Groups and Modules (R. Göbel, C. Metelli, A. Orsatti and L. Salce, eds.), CISM Courses and Lectures 287, Springer-Verlag, 1984, pp. 37-86. | Zbl | MR






