@article{RSMUP_2002__108__79_0,
author = {Casella, Emanuela and Trebeschi, Paola},
title = {A global existence result in {Sobolev} spaces for {MHD} system in the half-plane},
journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
pages = {79--91},
year = {2002},
publisher = {Seminario Matematico of the University of Padua},
volume = {108},
mrnumber = {1956431},
zbl = {1058.35175},
language = {en},
url = {https://www.numdam.org/item/RSMUP_2002__108__79_0/}
}
TY - JOUR AU - Casella, Emanuela AU - Trebeschi, Paola TI - A global existence result in Sobolev spaces for MHD system in the half-plane JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2002 SP - 79 EP - 91 VL - 108 PB - Seminario Matematico of the University of Padua UR - https://www.numdam.org/item/RSMUP_2002__108__79_0/ LA - en ID - RSMUP_2002__108__79_0 ER -
%0 Journal Article %A Casella, Emanuela %A Trebeschi, Paola %T A global existence result in Sobolev spaces for MHD system in the half-plane %J Rendiconti del Seminario Matematico della Università di Padova %D 2002 %P 79-91 %V 108 %I Seminario Matematico of the University of Padua %U https://www.numdam.org/item/RSMUP_2002__108__79_0/ %G en %F RSMUP_2002__108__79_0
Casella, Emanuela; Trebeschi, Paola. A global existence result in Sobolev spaces for MHD system in the half-plane. Rendiconti del Seminario Matematico della Università di Padova, Tome 108 (2002), pp. 79-91. https://www.numdam.org/item/RSMUP_2002__108__79_0/
[1] , Solvability of a homogeneous initial-boundary value problem for equations of magnetohydrodynamics of an ideal fluid, (Russian), Dinam. Sploshn. Sredy, 57 (1982), pp. 3-20. | Zbl | MR
[2] , Boundary-value problems for a class of first order partial differential equations in Sobolev spaces and applications to the Euler flow, Rend. Sem. Mat. Univ. Padova, 79 (1988), pp. 247-273. | Zbl | MR | Numdam
[3] , Kato's perturbation theory and well posedness for the Euler equations in bounded domains, Arch. Rat. Mech Anal., 104 (1988), pp. 367-382. | Zbl | MR
[4] , A well posedness theorem for non-homogeneous inviscid fluids via a perturbation theorem, (II) J. Diff. Eq., 78 (1989), pp. 308-319. | Zbl | MR
[5] - - , Global classical solutions for MHD system, to appear on Journal of Math. Fluid Mech., Mathematic. | Zbl | MR
[6] , On Classical Solutions of Two-Dimensional Non-Stationary Euler Equation, Arch. Rat. Mech. Anal., 25 (1967), pp. 188-200. | Zbl | MR
[7] - , Nonlinear evolution equations and the Euler flow, J. Funct. Analysis, 56 (1984), pp. 15-28. | Zbl | MR
[8] , Exterior problem for the two-dimensional Euler equation, J. Fac. Sci. Univ. Tokyo, Sec IA 30 (1983), pp. 63-92. | Zbl | MR
[9] , Weak and Classical Solutions of the Two-dimensional magnetohydrodynamic equations, Tohoku Math. J., 41 (1989), pp. 471-488. | Zbl | MR
[10] , Grundlagen der Hydromechanik, Edition of 1928 Springer, Berlin, 1968. | Zbl | MR | JFM
[11] , On a magnetohydrodynamic problem of Euler type, J. Diff. Eq., 74 (1988), pp. 318-335. | Zbl | MR
[12] , On the Equations of Ideal Incompressible Magneto-Hydrodynamics, Rend. Sem. Mat. Univ. Padova, 90 (1993), pp. 103-119. | Zbl | MR | Numdam
[13] , Navier-Stokes Equations, 2nd Ed., North-Holland, Amsterdam, 1979. | Zbl | MR
[14] , On the Euler equations of incompressible perfect fluids, J. Funct. Anal., 20 (1975), pp. 32-43. | Zbl | MR
[15] , Un théorèm sur l'existence du mouvement plan d'un fluide parfait, homogène, incompressible, pendant un temps infiniment longue, Math. Z., 37 (1933), pp. 698-726. | Zbl | MR





