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Longtime Behavior of Semilinear
Reaction-Diffusion Equations on the Whole Space.

VITTORINO PATA (*) - CLAUDIO SANTINA (**)

ABSTRACT - We analyze a parabolic reaction-diffusion equation on the whole spa-
ce. We prove existence, uniqueness, and continuous dependence results, and
we investigate the longtime behavior of solutions. In particular, we show that
the associated semigroup possesses a universal attractor. Specific difficulties
arise here, due to the lack of compactness of the usual Sobolev embeddings in
unbounded domains.

1. Introduction.

In this paper, we consider the following semilinear reaction-diffusion
equation on R3:

w—Au+gx, u)=f, (x,t)eR3x(z,TI,
u=u(x,t),

f=flx, t),

u(x, 7) = up(x).

(1.1

In bounded domains, such equations have been widely investigated (see,
e.g., [2,7,13] and the references therein), and sharp results concerning
the longtime behavior of solutions have been proved, such as the existen-
ce of universal attractors of finite fractal dimension. In the whole space
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di Milano, via Bonardi 9, 20133 - Milano, Italy, e-mail: pata@mate.polimi.it

(**) Indirizzo dell’A.: Dipartimento di Matematica, Universita di Brescia,
25133 - Brescia, Italy.
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R”, problem (1.1) has been studied in weighted Hilbert spaces LVZ(R"),
y € R, with norm

[l = [(1+ |22 u?(@) da

R"

Babin and Vishik [1] proved that for y > 0, under some growth restric-
tions on the nonlinearity g, (1.1) possesses a universal attractor in
LZ(R™). Incidentally, the growth restrictions on g seem unavoidable also
for existence and uniqueness results. Indeed, nonuniqueness and none-
xistenee may occur in general (see [9, 14]). In [6] the same result is obtai-
ned for y > n/2. Our scope is to analyze the case y = 0, that is, absence of
weight.

Existence of universal attractors of equations of parabolic type is
usually proved showing the existence of a bounded absorbing set in a
space which is compactly embedded in the space on which the semigroup
acts. In bounded domains £, one typically finds an absorbing set in
H'(8), and exploits the compact embedding H!(RQ) < L%(£). In our ca-
se, we can still find an absorbing set in H'(R?), but the embedding
H'(R?) < L2(R?) is no longer compact. Thus, to get the desired result,
we shall employ different techniques.

The plan of the paper is the following. In Section 2 we discuss the as-
sumptions on the nonlinear term g. In Section 3 we prove existence, uni-
queness, and continuous dependence results. In particular, we show that
the solutions to (1.1) can be expressed by means of an evolution process.
Section 4 is devoted to the existence of absorbing sets, which are uniform
as the external source is allowed to vary in a suitable space. In Section 5
we show that, in the autonomous case, the semigroup associated to the
problem possesses a universal attractor.

Finally, we mention that all the results of the paper are valid for
systems on R", that is, when u = (uy, ..., uy), f=(fi, ..., f) and g =
= (g, ..., §m) are m-dimensional vectors, and x € R”. Indeed, all formula-
tions and proofs can be easily generalized to this setting. Here, for brevi-
ty, we restrict our analysis to the scalar case on R3.

NotaTioN. We set H=L2(R?), V=H§(R®) =H'(R®), and V*=
= H “1(R®) (the dual space of V). As usual, we identify H with its dual
space H *. Given a space X, we denote its inner product and its norm by
(-, ) and |||y, respectively. The symbol (-, -) denotes the duality map
between V* and V and between L?(R?) and L(R?). We also consider
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spaces of X-valued functions defined on an interval I (possibly infinite),
such as C(I, &), LP(I, X), and H'(I, X), with the usual norms.

2. Conditions on the Nonlinear Term.

In order to solve problem (1.1) in a proper setting, we stipulate some
growth and monotonicity conditions on the nonlinear term. Namely, we
take g=g(x, 2) e C(R*), with g(x, -) e C}(R) for every fixed xeR3.
Moreover, we assume that there exist two functions v, e H N C(R?),
woe LY (R?), and positive constants ¢;, cs, ¢, and 7,, such that

(G1) ¢(,0)eH,

2]
a—g <c¢(1+ |2]*®), VxeR3,
2

(G2) ’ (x, 2)

(G3) lim inf I A = ¥1®

|2| = z

0, uniformly as xeR3,
(G4) (g(x,2)—g(x, 0)) 2=z —ya(x), VzeR, |x|=mn,

a
(G5) a—g(x,z)2—03, VzeR, VzeRS.
z

Notice that, upon replacing f(x, t) with f(x, t) — g(x, 0) in equation (1.1),
and v, (x) with v ,(x) — g(x, 0) in (G3), we may (and will) rewrite (G1) as

(G1) ¢(-,0)=0.
From (G1)-(G2) we see at once that
lg(, 2) | S (|2| + |2|™®).

In force of the above inequality, if u, we H N L%(R?), the generalized
Holder inequality (with exponents 6, 3/2, 6) entails

{gC, w), w | < e l|ullg lwller + e [l ooy el ([l o g -

Thus, if u € V, due to the continuous embedding V < L ¢(R?), and Young
inequality, we conclude that

@1 g€, w)lfp < ea(1 + [allf® + [alff)

for some ¢, > 0.
The next lemma will be crucial for the energy estimates.
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LEMMA 2.1. Assume (G1), (G3)-(G4). Then, for every v > 0 there are
c(v) =0 and o(v) >0 such that

2.2) (9C, w), u) — oW ullly = = vl|Vullhs — e»)

for every ueV.

Proor. Let v>0. From (G4),
2.3) g(x,2) 2= 2% —yy(x) =min{v, ¢} 2% — |ya(x)|.

By the use of the Poincaré-Wirtinger inequality, it is easy to prove that
there exists ¢5> 0 (depending on 7;) such that

2.4) J w2(x) do = cs|lwlfy — [[Vullys, VYweV.
[z] >
On setting z = w(x) and o(v) = csmin {v/2, c,/2}, integration of (2.3) over
|| >, and (2.4) bear
@5 [ 9@, u@) u@ do= —vVulhs + 200 ully = I 2l ).

[z| > 7o

When |x| <7, using (G3), and the continuity of g, we find cg > 0 such
that

(2.6) 9(x,2)z= —%z2+w1(x)z—cﬁ.

Integration of (2.6) with z = u(x) over |x| <7, and the Young inequali-
ty, give

Q( ) 2 4 3
@1 g(x, u(x)) w(x) de = — —|| I = (w1, wha| = 378

|z <7

— o) |lulfz; — "'_”1/)1”11 5”067”0

2o(v)

Addition of (2.5) and (2.7) implies (2.2). =
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3. Existence and Uniqueness.

Firstly, we give the definition of a weak solution to problem
(1.1).

DEeFINITION 3.1. Set I=[7,T], for teR and T>17. Let uyeH,
and

feL', H)+ L%, V*).
A function
weL®(,V)NCU,HYNHYI, V*)

is a weak solution to problem (1.1) in the time interval I provided
that

u(T) = Uy
and
(ug, w) + (Vu, Vg + (9(, u), w) = (f, w)

for all weV, and a.e. tel.

THEOREM 3.2. Assume (G1)-(G5). Then, given any time interval
I =[t, T], problem (1.1) has a weak solution u on I.

Proor. We adopt a Faedo-Galerkin procedure. Let {w;};>; be an
orthonormal basis of H of compactly supported, sufficiently regular fun-
ctions. For any integer n, we consider the subspace

H, =Span{w, ..., w,}cV.

It is convenient to approximate f with a sequence {f,}~-,cC%I, H)
such that

I =f7} +f7%
with
3.1) f,}—{fl in L'(I, H) and f,%-—)fZ in LZ(I, V*)

where (f1, f%) is some fixed decomposition of £, that is f=f'+ 2. We
now look for t, e (7, T, and functions a" € C'([z,t,]), forj=1, ..., n,
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such that the function
n
U, (t) = El a(t) w;

=
fulfills the system
(32) <atum wj)H + <Vu'm ij>H3 + <g(’ un)’ wj)H = (fr} +f7%’ wj)Hv
for te (z, t,], with initial conditions

3.3) (U (T), Wi = (Ug, W;)u,

where j =1, ..., n. System (3.2) can be easily put in normal form. Due to

the regularity in space of u,, an application of a standard fixed-point ar-

gument implies that (3.2) has a (unique) solution with ¢, small enough.
The second step is to find uniform energy estimates for the u,. Multi-

plying (3.2) times a;"(t), and summing over j=1, ..., n, we get

1d

2 dt

By virtue of Lemma 2.1 and Young inequality, it is possible to find ¢ >0

small enough and c; > 0 such that the inequality

d

dt

holds for a.e. te(r, t,). In force of (3.1) there is c¢g> 0 such that

W,y + N2 2, vy S cslf B, ) + csllF 2R eq, vy Y

Thus, observing that ||u, (7)|g < |[u |z, Gronwall lemma applied to (3.5),
and (3.3), lead to

It () |Br < 2llutoler + 2¢7(1 + esll FH B, ) + sl 22, vey)

for every te (t, t,). Being the above estimate independent of » (and t,),
we conclude that ¢, =T. Thus

3.6) U, is uniformly bounded in L * (I, H).

From an integration in time of (3.5), with the aid of (3.6), we also learn
that

8.7 uy, is uniformly bounded in L%(1, V).
Finally, from (2.1), we get that

(3.8) g(:, u,) is uniformly bounded in L2(I, V*).

(34) “%“127 + ”Vun”%{:“ + (g(, un)’ un)H = <f7}, un)H + <f7%, un)H'

3.5)  —llunlliy + ellwn s + el Vasnllrs < 7 (1 + I il llr + 157 1)
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Using the uniform bounds (3.6)-(3.8), up to a subsequence, we get the
convergences

(3.9 wu,—>u weakly star in L*(I, H), weakly in L%(I, V),

(3.10) g(-, u,)—y weakly in L2(I, V*).

We now fix an integer m, and we take w e H,,. In force of (3.2), for n =
=m, we have

d
(3.11) '&‘(unv w)H + <Vun’ Vw>H3 + <g(’ Up), w)H = <fna w)Ha

Due to (3.1), (3.9)-(3.10), we can pass to the limit in (3.11), and we find
that

d
(3-12) E(ZL’ w)H + (V/I,L, Vw>H3 + (X’ w) = <f’ ’M)), VweHm’
in the distribution sense on (z, T). Since H,, is dense in V, (3.12) is true
in fact for every weV, and we conclude that the equality

(8.13) w—Au+y=f

holds in the weak sense. Moreover, by comparison in (3.13), we see that
weL®,V*)+ LI, H), which, together with (3.9), entails
ueC(I, H). By a standard argument (see, e.g., [4]), we get that u(0) = u,.
We are left to show the equality y = g(-, ). To this aim, we apply the
method of Minty-Browder (see, e.g., [10]). Define

g(x, 2) =g(x, 2) + 32 .
Notice that, due to (G.5),

(3.14) @C, w)—g¢,v), w—2v)=0, Vw,veV.
Then, we integrate from 0 to ¢ e (r, T'] equation (3.4), and we take the li-
mit for n— o« . Exploiting convergences (3.9)-(3.10), we have

t t
©15) ol + [ 190 a0 + lim inf (g0, a9, u, () 0 <
0 0

t
1
S 5”%“%1 +0‘[<f, w(P)) di
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for a.e. t e I. Then we take the duality product of (3.13) with %, and inte-
grate from 0 to ¢, to get

t t
(3.16) %Ilu(t)ll% + f [Vau(9) s d + j (o, W)y dd =
0 0

t
1
3 oo I3 + f(f, u(9)) did .
0

Substitution of (3.16) into (3.15) yields

t t
3.17) lim inf j (GG, Uy (9)), u, (9)) dd < j (x, w(®)) do

0 0

for a.e. tel. Hence, from (3.9)-(3.10), (3.14) and (3.17),

t
(3.18) j (x + csu — G(-, w(®)), w(®) — w(P)) dv =
0
t
> lim inf j (gC, U () — g, WD), u, (¥) — w(D)) dd +
0

t
+ j<c3u(ﬂ) — cau(®), u, (¥) —w(®))dd | =0, VweL2d, V)
0

for a.e. te I. Choosing a sequence t,— T, for which (3.18) holds, we con-
clude that

t
(3.19) j (x + csu — G-, w(®)), u(®) —w@®))dd =0, YweLU,V).
0

Appealing now to a standard argument (that is, setting w = w — Av, with
veV, in (3.19), and letting A — 0), we get ¥ + csu = g(-, ), which implies
the desired equality y =g(-, ). =

THEOREM 3.3. Assume (G1)-(G5), and let {uy;, f;}i=12, with uyeH
and fie L*(I, H) + L%*(I, V*), be two sets of data, and denote by u; two
corresponding solutions to problem (1.1) on I. Then the following esti-
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mate holds:
llay () — up () | < Clllugy — woa s + 1A = ol i, 1y 220, ve))» ViEed,

for some constant C=C(T — 1) > 0. In particular, problem (1.1) has a
unique solution.

PRrROOF. The variable u = u; — u, fulfills the equation
(3.20) w— Au+ 9, uy) — gC, up) =fr — fo
with initial value

U(T) = Ug — Uge.-

The thesis easily follows taking the product of (3.20) with «, using (G5),
and applying Gronwall lemma. =

REMARK 3.4. Let {Uxt, 1), t =17, 7€ R} be the two-parameter fami-
ly of operators on H which associates to %, the solution to (1.1) at time ¢
with initial data u, given at time 7. In virtue of Theorem 3.2 and Theo-
rem 3.3, Uy(t, 7) is a strongly continuous process of continuous (nonli-
near) operators on H with functional symbol f, according to the usual de-
finition (see, e.g., [8], Chapter 6). When f is independent of time,
{Ut, 0),t =0} is a strongly continuous semigroup of continuous opera-
tors on H.

4. Uniform absorbing sets.

To describe the asymptotic behavior of the solutions to (1.1), we need
to introduce the Banach space G! of L.-translation bounded functions
with values in H, namely,

r+1
o = {feLb@, 1 o= mp [ Wlody < =)

Similarly, we define the Banach space G2 of L?2.-translation bounded fun-
ctions with values in V*, that is,

r+1
¢ = fresa, v ks Tl < =)
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THEOREM 4.1. Assume (G1)-(G5), and let feG! + 2. Then there
are €¢>0 and a bounded increasing function @ :R*—R* such
that

@l U, ) uolly <2lugllre "7+ S(|fler v w2),  VE=7.
PROOF. Let f=f1+f% be a fixed decomposition of f such that

Ifills < 2||flket + w2+ It is apparent that inequality (3.5) holds for u, f!, f?
as well, namely,

d
42) -l + elulfy + ellVallzs < ¢ 1+ 17 ol + 1172 -)

A generalized form of Gronwall lemma (see, e.g., Lemma A.3 in [3] and
[12]), implies that

2cqe’
1-¢7¢

e 2c cie’
() [ < 2o [Fre =~ + 77 + #_dz)z”fl“%l +

( £ 1Re

which gives (4.1). =
We also have an LZ2-control of the gradient norm.

PROPOSITION 4.2. Assume (G1)-(G5), and let fe G + G2. Then, there
is a bounded function ¥ : R* x R* ->R™", increasing in both variables,
such that the inequality

t+1
43) [ VU8, ©) wolfdid < Wllug i, [1flhs )
t
holds for every t=r.
ProoF. Integrate (4.2) from ¢ to £+ 1, and use (4.1). =
As an mmmediate consequence of Theorem 4.1 we have

COROLLARY 4.3. Let (G1)-(G5) hold, and let FcG' + G be a boun-
ded set. Then there is a bounded absorbing set in H for the family of
processes {U(t, 1), fe F}, which is uniform as fe F.

PrROOF. Denote M = sup||le ; 2, and let B be the ball of H centered

he F
at 0 and of radius 2(M). It is then clear from (4.1) that, given any
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R >0, there exists f, =0 big enough such that

U Ui, ) we B

U
lwlg<R feF reR t=ty+7

as desired. =

In the sequel, we take fe H independent of time (so, in particular,
feBh, and we set

S(t) = Ut 0).

REMARK 4.4. It is straightforward to check that
By = tyo St) B,

with B given by Corollary 4.3, is a connected, bounded absorbing set in
H for the semigroup S(t) which is invariant for S(t) (that is, S(t) Byc B,
for every t = 0).

Our next step is to prove the existence of an absorbing set for S(t) in
V. To do so, we have to ask a further condition on the nonlinear
term:

1) g, 2)| Sco|2|(1+ |2]), VxeR?,
(G6) or
(i) [D,gC, w)llyrp < c10(1 + [l

for some cy, ¢y > 0, where D, denotes differentiation with respect to the
first three variables of g. It should be noticed that condition (ii) is trivial-
ly satisfied when g does not depend on x explicitly, or if |D,g(x, 2) | ful-
fills an inequality like (i).

We shall also make use of the uniform Gronwall lemma (cf. [13]),
which we quote below for reader’s convenience.

LEMMA 45. Let ¢, m;, my, be three non-negative locally summable
Sfunctions on R* satisfying

%(P(t) < my(t) p(t) + me(t),  for ae. teR™,
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and such that

t+1 t+1
f m;(s)ds<a; and f @(s) ds <ag
t

t

(j=1, 2) for some positive constants a,, as, as. Then,

pt+1)<(ay+ag)e™, VteR".

THEOREM 4.6. Assume (G1)-(G6), and let fe H, independent of ti-
me. Then, there is a bounded set B,cV such that S(t) Byc B, for any
t=1.

PRrOOF. Let uye By, which implies S() uy e B, for every t = 0. Take
the inner product in H of (1.1) and —Au, and apply the Young inequality
to the term (f, du)y, to get

d
(4.4) —IVeuls + llull < f I — 2(gC, w), Au)y.
If (i) of (G6) holds, using the uniform boundedness of  in H as u, runs in
B, and the embedding V< L*(R®), we have that
@5)  —2(g(, w), Auy < lgC-, W + Aulf < e (1 + [[Vaullhs) + [l4ulff,
for some c;; > 0. If (ii) of (G6) holds, we have that
9
—2<g(’ u)y Au)H = -2 _('7 u) Vua Vu - 2<D:vg(9 u)’ V’LL)HS.
az H3
Using (G5), we see that
99 2
(4.6) —2( =2, u) Vu, Vu) < 2c||Vuls.
oz H3
Observe now that, since u € By, the inequality
Vel < e12(1 + [lAulf)

holds for some c¢;, > 0. Hence, (ii) of (G6) and the Young inequality entail
that

'—2<ng(7 u), VM>H3 s 2”ng(’ u)ll(V*)3|lvu||V3

(4.7) 2 2 \2 2
Schep(l+ [ulf)® + 1+ || Aulf.
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Adding (4.6) and (4.7), we discover that (4.5) holds in this case as well
(upon redefining c¢;;). Thus, (4.4) reads

d
—IVallzs < o [Velfs [Vl + e + [1£1E-

From Proposition 4.2 and Lemma4.5, with m, = ¢y ||Vul%: and m, =
=cy; + ||f]%, we conclude that there exists ¢;3> 0 such that

[Vu) |G < e, VE=1.

The above inequality, and Remark 4.4, yield the thesis. =

5. The universal attractor.

In the sequel, we assume (G1)-(G6). Moreover, we take
fe H independent of time .

The aim of this last section is to show that the semigroup S(¢) associated
to problem (1.1) has a universal attractor.

We first recall the classical definition of universal attractor; more de-
tails can be found in the books [2,7,13].

DEFINITION 5.1. A compact set @ c H is said to be the universal at-
tractor for the semigroup S(¢) if it enjoys the following properties:

(i) @ is fully invariant for S(t), that is, S(¢)d = A for every
t=0;
(ii) @ is an attracting set, namely, for any bounded set Bc H,

tlim dist (S(¢) B, A) =0
(where «dist» denotes the semidistance). We also recall the Kuratowsk:

measure of noncompactness a (cf. [T]). Given a set Bc H, a(B) is defi-
ned by

a(B)=inf {d: B has a finite cover of balls of H, of diameter less than d}.

It is clear that & is relatively compact if and only if a($B) =0.
We shall exploit the following theorem (cf. [7] and [11], Appendix).
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THEOREM 5.2. Assume the following hypotheses:

(i) there is an invariant, connected, bounded absorbing set
$0CH s
(ii) there is a sequence t; =0 such that lim a(S(t;) By) = 0.
]—)W ——
Then, the w-limit set of By, namely, w(By) = tDO l>JtS(s) By, 18 the
(connected) universal attractor of S(t). -0z

In virtue of Remark 4.4, we already know that condition (i) of Theo-
rem 5.2 is fulfilled. Thus we are left with proving that condition (ii) holds
true. To this aim, we perform a decomposition of the solution to (1.1). For
any r=1,, we introduce two smooth positive functions ¢7: R®—>R*,
1=1, 2, such that

Pi®) + i) =1, VzeRS
and

pi®)=0, if |x|<r,

py() =0, if |x|=r+1.

Since g(x, 2) — ¥ ,(x) is continuous on R?, there is a constant v, e (0, 1]
such that

3 1
(5.1) l9(x, 2) —y1 @) | |2] < (m);

whenever |z| <v,, and |x| <7+ 1. Moreover, from (G3), there is ¢, >0
such that

9@, ) — @
2

5.2)

r

as |z| = v, for every x e R®. Decompose —g(x, 2) + f(x) as
—g(x, 2) + flx) = — g1 (@, 2) — ga(x, 2) + f1(®) + fo (),
with
91(®, 2) =g(w, 2) () + (g(x, 2) — Y1 (@) + 22 + ¢,2) P3(®),

92(x, 2) = —(c2z + ¢,2) @3(2),
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and

filz, 2) = fx) ¢1(x),
folx, 2) = (flw) —y1(x) p3(x).

The dependence on r of g; and f; is omitted for simplicity of notation. No-
tice that g, still fulfills (G1)-(G3) (with ¢, replaced by ¢, + ¢ + ¢,). Condi-
tion (G4) and (5.1)-(5.2) entail

1
— —@1@y,@),

63)  gilx, ) z=cp2% - q;g(x)(m) r

for all xeR? and zeR. Concerning the other functions, we have
(b.4) fo(x) = go(x, 2) =0, as || =r+1,

for all ze R. Moreover, it is clear that

(5.5) lim [|fillz=0,
(5.6) lim [loTy el =0.

At this point, following [11] (see also [5]), we decompose any solution to
our system, with initial data u,e B, as the sum

U=, +w,
where
(6.7 00, = Av, — 9: (-, v,) + f1,
with
(5.8) v,(0) = up,
and
(5.9) Sy w, = Aw, — g, (-, u) + g1 (-, V) — g2 (-, u) + fo,
with

(5.10) w,(0)=0.
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LEMMA 53. Given any w >0 there exist t, =1 (independent of r)
and r, =1, such that the solution v, to (5.7)-(5.8) fulfills the estimate

“vr(tw)”H Sw ’

for every r=r, and uye By.

Proor. Taking the inner product in H of the equation (5.7) and v,,
and using (5.3) and Young inequality, we get

1d
3 ;i‘t-”vr”% + Collv, | < A(r),

having set

1 1
) ==+ = Al +lloiveliiws-
r Co
The Gronwall lemma and (5.8) lead to the inequality
2 —cat 2 1
(5.11) llo. ()| < € =2 [luo I + —h(r).
2
From (5.5)-(5.6) we see that h(r) >0 as r— . On recalling that
sup |lwl% < «, for any w > 0 it is immediate to find a couple ¢,, 7, which

weB

fulfills the thesis.
For r>0, we denote B, = {xeR®: |x| <7} and B =R3\B,.

LEMMA 54. Given any w > 0, there exist ry and 1y, with r, = 7, and
1y =27+ 2, such that the solution w, to (56.9)-(5.10) fulfills the estimate

o, @) lL2ae) < @
for every uye By, with t, given as in the previous lemma.
PRrROOF. Given r=7,, let o : R®*—[0, 1] be defined as

0, le| <r+1,
1
r+1
1, || >2r+2.

o(x) = (Jeg] =r-1), r+l<|xr|<2r+2,
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We have the estimate

2
r+1

(5.12) [Voi(x)| < o(x), VazeR®

Take the inner product in H of (5.9) and o%w,, to get

(5.13) 1d j@zwfdx = J‘szrdw,dx + ng(ﬁz —92(-, ) w,dax —
2 dtR3 % i

- J'Qz(gl(', u) — g1, v,)) wydx .
R3

From Remark 4.4 and (5.11), there exists ¢4 > 0 (independent of » and
ug € By) such that |[w,|% < c,4. Hence, in virtue of the Young inequality
and (5.12),

(5.14) fgzwrdwrdx < - f@z | Vw, |2dx +
R® R®

Ciy
+1°

- .[
+ — w, | |Vw, |dx <
T el Ve < -

R
Due to (6.4),
(5.15) [e*(f=g:(, ) wydz=0.
&
Finally, using (G5), we have that
(5.16)  %(g1(w) — 91, v)) w, = — g0 wri+ 0 @hco+e)wi= —c302w?,

since @%(x) @5(x) =0 for all xeR®. On collecting (5.14)-(5.16), equality
(5.13) transforms into

d J’ 2 2 I 2cy
— wldx <2c¢; | o?wldx + .
ar )¢ 2@ r+1

R

Applying the Gronwall lemma on the interval [0, t,], and recalling
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(6.10), we get

C15

[ wit) dos [oPwict) dos 22,
; r+1

Bf 12 R

where we set
Ci5 = 2(314 tw 6203% .

At this point, choosing 7, large enough for \/¢;5/(r; +1) < w, we conclu-
de that

||wr1(tw)||1,2(3g) so,
as claimed. =

According to Lemma 5.3 and Lemma 5.4, for any w > 0 there exist
t,=1 and 7, =ry(w) >0 such that

”u(tw)“L?(B,g) So,
for every uge $B,. Moreover, from Theorem 4.6,
l[utt )l s, < ci6s
for some c;3>0 independent of 7,. Exploiting the compact embed-
ding
H'(B,) —L*B,),

we conclude that S(t,) B, can be covered by finitely many balls of radius
w, hence

a(S(t,) By) <2w .

Letting w —0, it is readily seen that condition (ii) of Theorem (5.2) is sa-
tisfied as well. We have then proved our main result in this paper,
namely,

THEOREM 5.5. The semigroup S(t) associated to problem (1.1) has
a connected universal attractor A.
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