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Longtime Behavior of Semilinear
Reaction-Diffusion Equations on the Whole Space.

VITTORINO PATA (*) - CLAUDIO SANTINA (**)

ABSTRACT - We analyze a parabolic reaction-diffusion equation on the whole spa-
ce. We prove existence, uniqueness, and continuous dependence results, and
we investigate the longtime behavior of solutions. In particular, we show that
the associated semigroup possesses a universal attractor. Specific difficulties
arise here, due to the lack of compactness of the usual Sobolev embeddings in
unbounded domains.

1. Introduction.

In this paper, we consider the following semilinear reaction-diffusion
equation on IR3:

In bounded domains, such equations have been widely investigated (see,
e.g., [2, 7, 13] and the references therein), and sharp results concerning
the longtime behavior of solutions have been proved, such as the existen-
ce of universal attractors of finite fractal dimension. In the whole space
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di Milano, via Bonardi 9, 20133 - Milano, Italy, e-mail: pata@mate.polimi.it

(**) Indirizzo dell’A.: Dipartimento di Matematica, Universita di Brescia,
25133 - Brescia, Italy.
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problem (1.1) has been studied in weighted Hilbert spaces 
y e R, with norm

Babin and Vishik [1] proved that for y &#x3E; 0, under some growth restric-
tions on the nonlinearity g, (1.1) possesses a universal attractor in

Lç(Rn). Incidentally, the growth restrictions on g seem unavoidable also
for existence and uniqueness results. Indeed, nonuniqueness and none-
xistence may occur in general (see [9, 14]). In [6] the same result is obtai-
ned for y &#x3E; n/2 . Our scope is to analyze the case y = 0, that is, absence of
weight.

Existence of universal attractors of equations of parabolic type is

usually proved showing the existence of a bounded absorbing set in a
space which is compactly embedded in the space on which the semigroup
acts. In bounded domains S~ , one typically finds an absorbing set in
H 1 (,S~), and exploits the compact embedding H 1 (S~) ~ L 2 (,S~). In our ca-
se, we can still find an absorbing set in H 1 ( I~.3 ), but the embedding
H 1 (IE~3 ) ~L2(R3) is no longer compact. Thus, to get the desired result,
we shall employ different techniques.

The plan of the paper is the following. In Section 2 we discuss the as-
sumptions on the nonlinear term g . In Section 3 we prove existence, uni-
queness, and continuous dependence results. In particular, we show that
the solutions to (1.1) can be expressed by means of an evolution process.
Section 4 is devoted to the existence of absorbing sets, which are uniform
as the external source is allowed to vary in a suitable space. In Section 5
we show that, in the autonomous case, the semigroup associated to the
problem possesses a universal attractor.

Finally, we mention that all the results of the paper are valid for
systems on W, that is, when u = (u1, ... , f = ( fi , ... , fm ) and g =
- 

... , gm ) are m-dimensional vectors, and x E Rn. Indeed, all formula-
tions and proofs can be easily generalized to this setting. Here, for brevi-
ty, we restrict our analysis to the scalar case on 1~3.

NOTATION. We set H = L 2 ( IE~3 ), and V * _

= H -1 ( I~3 ) (the dual space of V). As usual, we identify H with its dual
space H * . Given a space ~C, we denote its inner product and its norm by
~’ , ’ ~~ respectively. The symbol (’ , ’ ) denotes the duality map
between V* and V and between LP(R3) and L (R). We also consider
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spaces of X-valued functions defined on an interval I (possibly infinite),
such as C(I , X), X), and X), with the usual norms.

2. Conditions on the Nonlinear Term.

In order to solve problem (1.1) in a proper setting, we stipulate some
growth and monotonicity conditions on the nonlinear term. Namely, we
take with for every fixed xeR3.
Moreover, we assume that there exist two 

and positive constants cl , c2 , c3 , and ro , such that

Notice that, upon replacing f ( x , t ) with f ( x , t ) - g( x , 0 ) in equation (1.1),
and 1jJ 1 (x) g(x, 0 ) in (G3), we may (and will) rewrite (Gl) as

From (G1)-(G2) we see at once that

In force of the above inequality, if u , the generalized
H61der inequality (with exponents 6, 3/2, 6) entails

Thus, if u E V, due to the continuous embedding V ~ L 6 ( IE~3 ), and Young
inequality, we conclude that

for some c4 &#x3E; 0.

The next lemma will be crucial for the energy estimates.
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LEMMA 2.1. Assume (G1), (G3)-(G4). Then, for every v &#x3E; 0 there are

c( v ) ~ 0 and &#x3E; 0 such that

for every u E V.

PROOF. Let v &#x3E; 0. From (G4),

By the use of the Poinear6-Wirtinger inequality, it is easy to prove that
there exists c5 &#x3E; 0 (depending on ro) such that

On setting z = u(x) and O(v) = c5min{v/2, c2/2}, integration of (2.3) over
I x I &#x3E; ro and (2.4) bear

ro, using (G3), and the continuity of g, we find C6 &#x3E; 0 such

that

Integration of (2.6) with z = u(x) over and the Young inequali-
ty, give

Addition of (2.5) and (2.7) implies (2.2).
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3. Existence and Uniqueness.

Firstly, we give the definition of a weak solution to problem
(1.1).

DEFINITION 3.1. Set
and

A function

is a weak solution to problem (1.1) in the time interval I provided
that

and

for all W E V, and a.e. t E I.

THEOREM 3.2. Assume (G1)-(G5). Then, given any time interval
I = [i, T], problem (1.1) has a weak soLution u on I.

PROOF. We adopt a Faedo-Galerkin procedure. 1 be an
orthonormal basis of H of compactly supported, sufficiently regular fun-
ctions. For any integer n, we consider the subspace

It is convenient to approximate f with a sequence 
such that

with

where ( f 1, f 2 ) is some fixed decomposition of f, that is f = f1 1 + f 2 . We
now look for tn E (r, T], and functions tn ] ), for j =1, ... , n ,
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such that the function

fulfills the system

for t E (,r, t., ], with initial conditions

where j = 1, ..., n . System (3.2) can be easily put in normal form. Due to
the regularity in space of un, an application of a standard fixed-point ar-
gument implies that (3.2) has a (unique) solution with tn small enough.

The second step is to find uniform energy estimates for the un . Multi-
plying (3.2) times aj"(t), and summing over j = 1, ... , n , we get

By virtue of Lemma 2.1 and Young inequality, it is possible to find E &#x3E; 0

small enough and c7 &#x3E; 0 such that the inequality

holds for a.e. t E (i, tn). In force of (3.1) there is C8 &#x3E; 0 such that

Thus, observing that IluollH, Gronwall lemma applied to (3.5),
and (3.3), lead to

for every t E (T, tn). Being the above estimate independent of n (and tn),
we conclude that tn = T . Thus

(3.6) un is uniformly bounded in L °° (I , H) .

From an integration in time of (3.5), with the aid of (3.6), we also learn
that

(3.7) un is uniformly bounded in L 2 (I , T~ .
Finally, from (2.1), we get that

(3.8) g( ~ , un ) is uniformly bounded in L 2 (I , V*).
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Using the uniform bounds (3.6)-(3.8), up to a subsequence, we get the
convergences

We now fix an integer m , and we take w E Hm . In force of (3.2), for n a
&#x3E;- m, we have

Due to (3.1), (3.9)-(3.10), we can pass to the limit in (3.11), and we find
that

in the distribution sense on ( z, T). Since H~ is dense in V, (3.12) is true
in fact for every w E V, and we conclude that the equality

holds in the weak sense. Moreover, by comparison in (3.13), we see that
ut E L 2 (I , V * ) + L 1 (I , H), which, together with (3.9), entails

u E C(I, H). By a standard argument (see, e.g., [4]), we get that = uo .
We are left to show the equality X = g , u). To this aim, we apply the
method of Minty-Browder (see, e.g., [10]). Define

Notice that, due to (G.5),

Then, we integrate from 0 to t E (i, T] equation (3.4), and we take the li-
mit for n ~ ~ . Exploiting convergences (3.9)-(3.10), we have
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for a.e. t E I. Then we take the duality product of (3.13) with u , and inte-
grate from 0 to t , to get

Substitution of (3.16) into (3.15) yields

for a.e. Hence, from (3.9)-(3.10), (3.14) and (3.17),

for a.e. Choosing a sequence tn -~ T , for which (3.18) holds, we con-
clude that

Appealing now to a standard argument (that is, setting w = u - Àv, with
v E V, in (3.19), and letting 1 - 0), we get X + C3 U = ~(-, u), which implies
the desired equality X = g(., u ).

THEOREM 3.3. Assume (Gl)-(G5), and let luoi, with 
and , fi ELI (I, H) + L 2 (I , V*), be two sets of data, and denote by ui two
corresponding solutions to problem (1.1) on I. Then the following esti-
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rnacte holds:

for some constant C = C(T - i) &#x3E; 0. In particular, problem (1.1) has a
unique solution.

PROOF. The variable u = Ul - U2 fulfills the equation

with initial value

The thesis easily follows taking the product of (3.20) with u, using (G5),
and applying Gronwall lemma.

REMARK 3.4. Let { Uf(t, i), t ~ i, r E R} be the two-parameter fami-
ly of operators on H which associates to uo the solution to (1.1) at time t
with initial data uo given at time z . In virtue of Theorem 3.2 and Theo-

rem 3.3, Uf(t, T) is a strongly continuous process of continuous (nonli-
near) operators on H with functional symbol f , according to the usual de-
finition (see, e.g., [8], Chapter 6). When f is independent of time,

0 ), t ~ 0} is a strongly continuous semigroup of continuous opera-
tors on H .

4. Uniform absorbing sets.

To describe the asymptotic behavior of the solutions to (1.1), we need
to introduce the Banach space 1)1 of L1loc-translation bounded functions
with values in H, namely,

Similarly, we define the Banach space 1)2 of L2loc-translation bounded fun-
ctions with values in V * , that is,
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THEOREM 4.1. Assume (Gl)-(G5), and let f E 1)1 + ‘~2 . Then there
are e &#x3E; 0 and a bounded increasing function 0 : R + --~ I~+ such

that

PROOF. Let f = f 1 + f 2 be a fixed decomposition of f such that
It is apparent that inequality (3.5) holds for 

as well, namely,

A generalized form of Gronwall lemma (see, e.g., Lemma A.3 in [3] and
[12]), implies that

which gives (4.1). o

We also have an L-control of the gradient norm.

PROPOSITION 4.2. Assume (Gl)-(G5), and let f E b1 + b2. Then, there
is a bounded R + x R+ - R + , increasing in both variables,
such that the inequality

holds for every t ~ i.

PROOF. Integrate (4.2) from t to t + 1, and use (4.1)..

As an immediate consequence of Theorem 4.1 we have

COROLLARY 4.3. Let (G1)-(G5) hold, and + b2 be a boun-
ded set. Then there is a bounded absorbing set in H for the family of

~), fe which is uniform as 

PROOF. Denote M = and let ~3 be the ball of H centered
he ff

at 0 and of radius 2 CP(M). It is then clear from (4.1) that, given any
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R &#x3E; 0, there exists to ~ 0 big enough such that

as desired.

In the sequel, we take f E H independent of time (so, in particular,
f E 1)1), and we set

REMARK 4.4. It is straightforward to check that

with B given by Corollary 4.3, is a connected, bounded absorbing set in
H for the semigroup S( t ) which is invariant for ,S( t ) (that is, S( t ) B0 C So
for every t a 0).

Our next step is to prove the existence of an absorbing set for ,S(t) in
V. To do so, we have to ask a further condition on the nonlinear
term:

for some c9 , clo &#x3E; 0 , where D, denotes differentiation with respect to the
first three variables of g . It should be noticed that condition (ii) is trivial-
ly satisfied when g does not depend on x explicitly, or if Dx g(x , z ) I ful-

fills an inequality like (i).
We shall also make use of the uniform Gronwall lemma (cf. [13]),

which we quote below for reader’s convenience.

LEMMA 4.5. Let cp , m1, m2 , be three nou-negative locally surrzmabLe
functions on R + satisfying
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and such that

( j = 1, 2) for some positive constants aI, a2 , a3. Then,

THEOREM 4.6. Assume (Gl)-(G6), and let f E H, independent of ti-
me. Then, there is a bounded set 831 c V such that S(t) 830c 831 for any
t a 1.

PROOF. Let uo E which implies S(t) uo E 830 for every t ~ 0 . Take
the inner product in H of ( 1.1 ) and -A u, and apply the Young inequality
to the term ( f , to get

If (i) of (G6) holds, using the uniform boundedness of u in H as uo runs in
~3o and the embedding V ~ L 4 ( IE~3 ), we have that

for some c11 &#x3E; 0. If (ii) of (G6) holds, we have that

Using (G5), we see that

Observe now that, since the inequality

holds for some Ci2 &#x3E; 0. Hence, (ii) of (G6) and the Young inequality entail
that
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Adding (4.6) and (4.7), we discover that (4.5) holds in this case as well
(upon redefining c11). Thus, (4.4) reads

From Proposition 4.2 and Lemma 4.5, with m1 = and m2 =

= C11 + IlfllJ¡, we conclude that there exists c13 &#x3E; 0 such that

The above inequality, and Remark 4.4, yield the thesis.

5. The universal attractor.

In the sequel, we assume (G1)-(G6). Moreover, we take

f E H independent of time .

The aim of this last section is to show that the semigroup ,S(t) associated
to problem (1.1) has a universal attractor.

We first recall the classical definition of universal attractor; more de-
tails can be found in the books [2, 7, 13].

DEFINITION 5.1. A compact set a c H is said to be the universaL at-
tractor for the semigroup S(t) if it enjoys the following properties:

(i) a is fully invariant for ,S( t ), that is, S(t) cr = cor for every
t ; 0;

(ii) a is an attracting set, namely, for any bounded set B c H,

(where «dist» denotes the semidistance). We also recall the Kuratowski
measures of noncompactness a (cf. [7]). Given a set 83 c H, a(83) is defi-
ned by

=inf{d: lB has a finite cover of balls of H, of diameter less than dl .

It is clear that ~3 is relatively compact if and only if a(,B) = 0.
We shall exploit the following theorem (cf. [7] and [11], Appendix).
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THEOREM 5.2. Assume the following hypotheses:

(i) there is an invariant, connected, bounded absorbing set

B0 C H;

(ii) there is ac 0 such that 1:

Then, the cv-Limit set of namely,
(connected) universal attractor of S(t). 

.-"

In virtue of Remark 4.4, we already know that condition (i) of Theo-
rem 5.2 is fulfilled. Thus we are left with proving that condition (ii) holds
true. To this aim, we perform a decomposition of the solution to (1.1). For
any r ~ ro, we introduce two smooth positive functions R3 ~ R + ,
i =1, 2, such that

and

Since z ) - ~ 1 ( x ) is continuous on I~4 , there is a constant (0, 1 ]
such that

whenever |z|  v r, and + 1. Moreover, from (G3), there is Cr &#x3E; 0

such that

as I z I for every Decompose -

with
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and

The dependence on r of gi and fi is omitted for simplicity of notation. No-
tice that gl still fulfills (G1)-(G3) (with C1 replaced by C1 + c2 + C,)- Condi-
tion (G4) and (5.1)-(5.2) entail

for all r e R and Concerning the other functions, we have

for all Moreover, it is clear that

At this point, following [11] (see also [5]), we decompose any solution to
our system, with initial data uo E 1Bo as the sum

where

(5.7)

with

(5.8)

and

(5.9)

with

(5.10)
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LEMMA 5.3. Given any (o &#x3E; 0 there exist 1 (independent o, f r)
and ro such that the solution vr to (5.’l)-(5.8) fulfills the estimates

for every r wand uo E 

PROOF. Taking the inner product in H of the equation (5.7) and vr,
and using (5.3) and Young inequality, we get

having set

The Gronwall lemma and (5.8) lead to the inequality

From (5.5)-(5.6) we see that h(r) - 0 as On recalling that
, for any a) &#x3E; 0 it is immediate to find a couple t~, , r~, which

fulfills the thesis.

For r &#x3E; 0 , we denote . and .

LEMMA 5.4. Given any Q) &#x3E; 0, there exist r1 and r2, with r1; r wand
r2 = 2 rl + 2 , such that the solution WrI to (5.9)-(5.10) fulfills the estimate

for every uo E with tw given as in the previous lemma.

PROOF. Given let Q : R3~[0, 1 ] be defined as
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We have the estimate

Take the inner product in H of (5.9) and to get

From Remark 4.4 and (5.11), there exists c14 &#x3E; 0 (independent of r and
uo E So) such that c14 . Hence, in virtue of the Young inequality
and (5.12),

Due to (5.4),

Finally, using (G5), we have that

since O2 (x) = 0 for all r e R . On collecting (5.14)-(5.16), equality
(5.13) transforms into

Applying the Gronwall lemma on the interval [0, t~, ], and recalling
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(5.10), we get

where we set

At this point, choosing r1 large enough for we conclu-
de that

as claimed.

According to Lemma 5.3 and Lemma 5.4, for any cv &#x3E; 0 there exist
1 and r2 = r2 ( cv ) &#x3E; 0 such that

for every uo E 830. Moreover, from Theorem 4.6,

for some C16 &#x3E; 0 independent of r2. Exploiting the compact embed-
ding

we conclude that can be covered by finitely many balls of radius
(o, hence

Letting cv -~ 0 , it is readily seen that condition (ii) of Theorem (5.2) is sa-
tisfied as well. We have then proved our main result in this paper,
namely,

THEOREM 5.5. The semigroup S(t) associated to problem (1.1) has
a connected universal attractor Cl.
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