@article{RSMUP_1998__99__247_0,
author = {Zanardo, Paolo},
title = {Relations between localizations and $I$-adic completions in commutative domains},
journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
pages = {247--254},
year = {1998},
publisher = {Seminario Matematico of the University of Padua},
volume = {99},
mrnumber = {1636615},
zbl = {0927.13014},
language = {en},
url = {https://www.numdam.org/item/RSMUP_1998__99__247_0/}
}
TY - JOUR AU - Zanardo, Paolo TI - Relations between localizations and $I$-adic completions in commutative domains JO - Rendiconti del Seminario Matematico della Università di Padova PY - 1998 SP - 247 EP - 254 VL - 99 PB - Seminario Matematico of the University of Padua UR - https://www.numdam.org/item/RSMUP_1998__99__247_0/ LA - en ID - RSMUP_1998__99__247_0 ER -
%0 Journal Article %A Zanardo, Paolo %T Relations between localizations and $I$-adic completions in commutative domains %J Rendiconti del Seminario Matematico della Università di Padova %D 1998 %P 247-254 %V 99 %I Seminario Matematico of the University of Padua %U https://www.numdam.org/item/RSMUP_1998__99__247_0/ %G en %F RSMUP_1998__99__247_0
Zanardo, Paolo. Relations between localizations and $I$-adic completions in commutative domains. Rendiconti del Seminario Matematico della Università di Padova, Tome 99 (1998), pp. 247-254. https://www.numdam.org/item/RSMUP_1998__99__247_0/
[1] Krull intersection theorem, Pacific J. Math. 57 (1975), pp. 11-14 | Zbl | MR
[2] - I. MACDONALD, Introduction to Commutative Algebra, Addison-Wesley (1969). | Zbl | MR
[3] - - - , Differentialrechnung in der analytischen Geometrie, Springer-Verlag Berlin, Heidelberg, New York (1967). | Zbl | MR
[4] - , Topics in M-adic Topologies, Springer-Verlag, Berlin, Heidelberg, New York (1971). | Zbl | MR
[5] - - , Primary decomposition of divisorial ideals in Mori domains, J. Algebra, 117 (1988), pp. 327-342. | Zbl | MR
[6] , Torsion-Free Modules, The University of Chicago Press, Chicago (1972). | Zbl | MR
[7] - , Modules over domains large in a complete discrete valuation ring, to appear. | Zbl | MR
[8] , Local Rings, Wiley, Interscience (1962). | Zbl | MR
[9] , Mehrfach perfekte Körper, Math. Ann., 108 (1933), pp. 1-25. | MR | JFM
[10] - U. ZANNIER, Commutative domains large in their M-adic completions, Rend. Sem. Mat. Univ. Padova, 95 (1996), pp. 1-9. | Zbl | MR | Numdam






