@article{RSMUP_1995__94__121_0,
author = {Hegarty, Peter V.},
title = {Minimal abelian automorphism groups of finite groups},
journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
pages = {121--135},
year = {1995},
publisher = {Seminario Matematico of the University of Padua},
volume = {94},
mrnumber = {1370908},
zbl = {0846.20024},
language = {en},
url = {https://www.numdam.org/item/RSMUP_1995__94__121_0/}
}
TY - JOUR AU - Hegarty, Peter V. TI - Minimal abelian automorphism groups of finite groups JO - Rendiconti del Seminario Matematico della Università di Padova PY - 1995 SP - 121 EP - 135 VL - 94 PB - Seminario Matematico of the University of Padua UR - https://www.numdam.org/item/RSMUP_1995__94__121_0/ LA - en ID - RSMUP_1995__94__121_0 ER -
%0 Journal Article %A Hegarty, Peter V. %T Minimal abelian automorphism groups of finite groups %J Rendiconti del Seminario Matematico della Università di Padova %D 1995 %P 121-135 %V 94 %I Seminario Matematico of the University of Padua %U https://www.numdam.org/item/RSMUP_1995__94__121_0/ %G en %F RSMUP_1995__94__121_0
Hegarty, Peter V. Minimal abelian automorphism groups of finite groups. Rendiconti del Seminario Matematico della Università di Padova, Tome 94 (1995), pp. 121-135. https://www.numdam.org/item/RSMUP_1995__94__121_0/
[1] - , Automorphisms of a p-group, Illinois J. Math., 9 (1965), pp. 137-143. | Zbl | MR
[2] , Problems in Group Theory, Blaisdell, New York (1976). | Zbl
[3] , On finite groups whose group of automorphisms is Abelian, Ph. D. thesis, Wayne State University, 1975, Dissertation Abstracts, V. 36, p. 2269 B.
[4] , A note on the automorphism group of a p-group, Proc. Amer. Math. Soc., 19 (1968), pp. 1379-1382. | Zbl | MR
[5] - D. MACHALE - E. A. O'BRIEN - R. SHEEHY, Finite groups whose automorphism groups are 2-groups, Proc. R. Ir. Acad., 94A, No. 2 (1994), pp. 137-145. | Zbl | MR
[6] , A note on the outer automorphisms of finite nilpotent groups, Amer. Math. Monthly (1966), pp. 174-175. | Zbl | MR
[7] - , Finite groups with odd order automorphism groups, Proc. R. Ir. Acad., to appear. | Zbl | MR
[8] , A non-Abelian group whose group of automorphisms is Abelian, Messenger Math., 43 (1913), pp. 124-125. | JFM
[9] , On p-groups with Abelian automorphism group, Rend. Sem. Mat. Univ. Padova, 92 (1994). | Zbl | MR | Numdam
[10] , The central automorphisms of a finite group, J. London Math. Soc., 44 (1969), pp. 225-228. | Zbl | MR





