@article{RSMUP_1992__88__151_0,
author = {Amar, Micol and De Cicco, Virginia},
title = {The uniqueness as a generic property for some one-dimensional segmentation problems},
journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
pages = {151--173},
year = {1992},
publisher = {Seminario Matematico of the University of Padua},
volume = {88},
mrnumber = {1209122},
zbl = {0783.49014},
language = {en},
url = {https://www.numdam.org/item/RSMUP_1992__88__151_0/}
}
TY - JOUR AU - Amar, Micol AU - De Cicco, Virginia TI - The uniqueness as a generic property for some one-dimensional segmentation problems JO - Rendiconti del Seminario Matematico della Università di Padova PY - 1992 SP - 151 EP - 173 VL - 88 PB - Seminario Matematico of the University of Padua UR - https://www.numdam.org/item/RSMUP_1992__88__151_0/ LA - en ID - RSMUP_1992__88__151_0 ER -
%0 Journal Article %A Amar, Micol %A De Cicco, Virginia %T The uniqueness as a generic property for some one-dimensional segmentation problems %J Rendiconti del Seminario Matematico della Università di Padova %D 1992 %P 151-173 %V 88 %I Seminario Matematico of the University of Padua %U https://www.numdam.org/item/RSMUP_1992__88__151_0/ %G en %F RSMUP_1992__88__151_0
Amar, Micol; De Cicco, Virginia. The uniqueness as a generic property for some one-dimensional segmentation problems. Rendiconti del Seminario Matematico della Università di Padova, Tome 88 (1992), pp. 151-173. https://www.numdam.org/item/RSMUP_1992__88__151_0/
[1] , A compactness theorem for a special class of functions of bounded variation, Bull. Un. Mat. It., 3-B (1989), pp. 857-881. | Zbl | MR
[2] , Variational problems in SBV, Acta Applicandae Mathematicae, 17 (1989), pp. 1-40. | Zbl | MR
[3] - , Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence, to appear on Comm. Pure Appl. Math. | Zbl
[4] - , Uniqueness of the one-dimensional bounce problem as a generic property in L1([0, T]; R), Boll. Un. Mat. It. (6), 1-A (1982), pp. 87-91. | Zbl | MR
[5] - , On the existence of solutions to a problem in image segmentation, to appear.
[6] - - , A variational method in image segmentation: existence and approximation results, to appear on Acta Mathematica. | Zbl | MR
[7] - - , Existence theorem for a minimum problem with free discontinuity set, Arch. Rational Mech. Anal., (3), 108 (1989), pp. 195-218. | Zbl | MR
[8] - J. A. YORKE, The generic property of existence of solutions of differential equations in Banach spaces, J. Diff. Eq., 13 (1973), pp. 1-12. | Zbl | MR
[9] - S. SOLIMINI, Segmentation of images by variational methods: a constructive approach, Revista Matem. de la Univ. Complutense de Madrid, 1 (1988), pp. 169-182. | Zbl | MR
[10] - , Segmentation d'images par méthode variationelle: une preuve constructive d'existence, C.R. Acad. Sci. Paris, 308, Série I (1989), pp. 465-470. | Zbl | MR
[11] - J. SHAH, Optimal approximations by piecewise smooth functions and associated variational problems, Comm. Pure Appl. Math., 42 (1989), pp. 577-685. | Zbl | MR
[12] - , Boundary detection by minimizing functionals, Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, 1985.
[13] , Zur Theorie der Differentialgleichung y' = f(x, y), Bull. Acad. Polon. Sci. (1932), pp. 221-228. | Zbl
[14] , Segmentation by minimizing functionals: smoothing properties, to appear.
[15] , Existence, uniqueness and approximation of fixed points as a generic property, Bull. Soc. Math. Brasil, 5 (1974), pp. 17-29. | Zbl | MR





