@article{RSMUP_1987__77__317_0,
author = {Miric\u{a}, \c{S}tefan},
title = {Generalized solutions by {Cauchy's} method of characteristics},
journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
pages = {317--350},
year = {1987},
publisher = {Seminario Matematico of the University of Padua},
volume = {77},
mrnumber = {904627},
zbl = {0627.49015},
language = {en},
url = {https://www.numdam.org/item/RSMUP_1987__77__317_0/}
}
TY - JOUR AU - Mirică, Ştefan TI - Generalized solutions by Cauchy's method of characteristics JO - Rendiconti del Seminario Matematico della Università di Padova PY - 1987 SP - 317 EP - 350 VL - 77 PB - Seminario Matematico of the University of Padua UR - https://www.numdam.org/item/RSMUP_1987__77__317_0/ LA - en ID - RSMUP_1987__77__317_0 ER -
%0 Journal Article %A Mirică, Ştefan %T Generalized solutions by Cauchy's method of characteristics %J Rendiconti del Seminario Matematico della Università di Padova %D 1987 %P 317-350 %V 77 %I Seminario Matematico of the University of Padua %U https://www.numdam.org/item/RSMUP_1987__77__317_0/ %G en %F RSMUP_1987__77__317_0
Mirică, Ştefan. Generalized solutions by Cauchy's method of characteristics. Rendiconti del Seminario Matematico della Università di Padova, Tome 77 (1987), pp. 317-350. https://www.numdam.org/item/RSMUP_1987__77__317_0/
[1] - J. ROBBIN, Transversal Mappings and Flows, Benjamin, New York, 1967. | Zbl | MR
[2] jr., The Hamilton-Jacobi equation. A global approach, Academic Press, New York, 1977. | Zbl | MR
[3] , Mathematical Methods of Optimal Control, Holt, Rinehart & Winston, New York, 1971. | Zbl | MR
[4] , Existence of regular synthesis for general control problems, J. Differential Equations, 38 (1980), pp. 317-343. | Zbl | MR
[5] , Optimization. Theory and Applications, Springer, New York, 1983. | Zbl | MR
[6] , Optimal control and the true hamiltonian, SIAM Review, 21 (1979), pp. 157-166. | Zbl | MR
[7] - , Methods of Mathematical Physics, vol. II, Wiley, New York, 1962. | Zbl | MR
[8] - - , Some properties of viscosity solutions of Hamilton-Jacobi equations, Trans. A.M.S., 282, 2 (1984), pp. 487-502. | Zbl | MR
[9] , On the Cauchy problem for Bellman equation of dynamic programming, Z. Vyc. Mat. i Mat. Phys., 9 (1969), pp. 426-432 (Russian). | Zbl | MR
[10] , The Cauchy problem for a nonlinear first order partial differential equation, J. Differential Equations, 5 (1969), pp . 515-530. | Zbl | MR
[11] , Differential Equations, Ed. Did. Pedagogică, Bucuresti, 1972 (Romanian). | MR
[12] , Ordinary Differential Equations, Wiley, New York, 1964. | Zbl | MR
[13] , Differential Games, Wiley, New York, 1965. | Zbl | MR
[14] , Introduction to Differentiable Manifolds, Interscience, New York, 1962. | Zbl | MR
[15] , Generalized Solutions of Hamilton-Jacobi Equations, Pitman, Boston, 1982. | Zbl | MR
[16] , Stratifications and Mappings, Preprint, Harvard University (Russian transl.: Uspehi Mat. Nauk, 27 (1972), pp. 85-118). | Zbl | MR
[17] , The contingent and the paratingent as generalized derivatives for vector-valued and set-valued mappings, Nonlinear Analysis. Theory, Theory & Appl., 6 (1982), pp. 1335-1368. | Zbl | MR
[18] , Stratified Hamiltonians and the optimal feedback control, Ann. Mat. Pura Appl., 33 (1983), pp. 51-78. | Zbl | MR
[19] , Stratified Hamilton-Jacobi equations and applications, Anal. Univ. Bucureşti, Seria Mat., 33 (1984), pp. 59-68. | Zbl | MR
[20] , Dynamic programming method for stratified optimal control problems, Preprint Series in Mathematics, No. 12/1984, Increst-Inst. Inst. Mat., Bucureşti, 1984.
[21] , Sufficiency theorem for discontinuous optimal cost surfaces, SIAM J. Control Opt., 16 (1978), pp. 63-82. | Zbl | MR
[22] , Analytic stratifications and control theory, « Proc. Int. Congress of Math. » (Helsinki, 1978), pp. 865-871. | Zbl | MR
[23] , Subanalytic sets in the Calculus of Variations, Acta Math., 146 (1981), pp. 167-199. | Zbl | MR
[24] , Ensembles et morphismes stratifiés, Bull. Amer. Math. Soc., 75 (1969), pp. 24-284. | Zbl | MR
[25] , Tangents to an analytic variety, Ann. of Math., 81 (1965), pp. 496-549. | Zbl | MR





