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On the Lattice Automorphisms of SL(n, q) and PSL(n, q).

HELMUT VÖLKLEIN (*)

Introduction.

In a previous paper [5], a study of the lattice automorphisms
(= automorphisms of the lattice of subgroups) of the finite Chevalley
groups G has been begun. Starting-point was the fact that if

rank (G) h 2 (and if some exceptional cases are excluded), then for
the group A(G) of lattice automorphisms of G we have

where 0 is the kernel of the action of A(G) on the Tits building of G.
For a large class of simple Chevalley groups G (essentially those whose
Weyl group has a non-trivial center), it was shown that 0 is trivial,
i.e. every lattice automorphism is induced by a group auto-

morphism. However, the groups q) do not belong to this

class, and in fact it was shown that 0 is not even solvable for many
of the groups PSL(3, q) . This phenomenon motivated the present
paper, where we take a closer look at the groups G = PSL(N, q),
n ~ 3. (In the case n = 2 and q &#x3E; 3, we have Aut (G) by
Metelli [2]).

We show that if we exclude the case that q is a power of 3 and
n = 2m with m odd, then 0 commutes with the inner automorphisms
of G and fixes every unipotent subgroup of G. This allows one to

(*) Indirizzo dell’.A.: Dept. of Mathematics, University of Florida, Gaines-
ville, Florida 32611, U.S.A.
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determine the exact structure of 0 for certain of the groups PSL(3, q).
It remains an open problem whether 0 can be non-trivial for any of
the groups q ) , n &#x3E; 3.

Notations.

For elements a, y of a group G we set the same if y
is a subgroup of G. If A, B, C, ... are elements or subgroups of G,
we let A, B, C,...) denote the subgroup of G generated by them.
The following notations will be fixed throughout the paper: q is a

power of the prime p, k = GF(q) is the field with q elements, D is
a central subgroup of SL(n, q), n &#x3E; 3 , and G = 

We regard SL(n, q) as a matrix group which acts on the k-vector
space kn in the canonical way; then G acts naturally on the (n -1 ) -
dimensional projective space Pn-1 over k.

Preliminaries.

Since G is perfect, every lattice automorphism of G preserves the
orders of the subgroups of G (see [4, Ch. II, Th. 8]); this will be used
constantly in the following (without further reference). In particular,
it implies that the group A ( G) of lattice automorphisms of G acts on
the set of p-Sylow subgroups of G and on the Tits building of G (see [5,
sect. 1]); it is easy to see that the kernels of these two actions coincide,
and this common kernel will be denoted by 0. To state it explicitly,
ø is the (normal) subgroup of A(G) consisting of those lattice auto-
morphisms of G that fix every p-Sylow subgroup of G; the elements
of 0 will be called exceptional lattice automorphisms of G.

In our situation, the Tits building of G is isomorphic to the flag
complex of Pn-1 and thus (+) follows from classical projective geometry.
But nothing of this will be needed in the following, since we ex-

clusively study the group 0. This is done in a completely elementary
fashion; therefore we avoid using the language of algebraic groups,
although it would be helpful at some points.

LEMMA 1. (i) If n &#x3E; 5, then 0 fixes all subgroups of G that have n
linearly independent fixed points in Pn-1.
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(ii) If p ~ 2, then 0 fixes every subgroup J of G which is the

image of a subgroup of order 2 of 

PROOF. Let P~, ... , Pn be linearly independent points of P--’,
let ri be an element of G interchanging P;i and fixing the other
P~’s (for i == 1, ..., n - 1), and let U (resp. U-) be the group of those
p-elements of G that fix all the spaces P1 + ... + .Pz (resp. +
+ ... + for i = 1, ... , n -1. Since U and U- are p-Sylow sub-
groups of G, 0 fixes the groups Ui : = U n and ~:== U- n
n Ura, hence also U-;&#x3E; ( ^~ ~.L( 2, q) ) .

(i) The normalizer NG( U) of U in G is the largest subgroup
of G containing U but no other p-Sylow subgroup of G. Hence 0

fixes N~( U), and analogously NG( U-), thus also T : = 
It is well-known that T is the group of all elements of G that fix

P1, ... , P~ . Hence it suffices to show that 0 fixes every subgroup
of T.

Now T is generated by the groups T i : = T n Si (i = 1, ... , n -1 ),
which are fixed by 0 and are all isomorphic to the multiplicative gruup
of k. Furthermore we have  Tl , ... , TlX...XTn-2, hence

if n &#x3E; 5 then the (abelian) group T contains at least three independent
elements of each occurring order; from this it follows by a theorem
of Baer (see [4, Ch. II, Th. 2]) that if T(l) denotes the 1-torsion sub-
group of T for a prime 1, then every lattice automorphism of T(l)
is induced by a group automorphism. This shows that for every q c- 0
there is an automorphism f of T with Xf = XCP for all subgroups X of T.

Now consider the restriction of f where
1 ~ i :::; n - 2. The three cyclic subgroups T i , T;i and of Y
are fixed by f (Note that arises in the same way as the T/s
when we renumber the P;’s appropriately) and Y is the direct product
of any two of them; hence f acts equivalently in all three. Thus f
acts equivalently in all the T/s~ which means that there is some integer
m with f(t) = t- for all t in T. Hence f , and thus also cp, fixes every
subgroup of T. This proves (i).

(ii) By the above, we can 4. Then J is either the

center of some Si (for a suitable choice of PI, ..., Pn), or the unique
central subgroup of order 2 of G. Hence J is fixed by 0 (see e.g. state-
ment (+) in the proof of Lemma 1 in [5]).

REMARK. Lemma 1 (i) fails drastically in the case n = 3, see [5,
sect. 3].
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1. Unipotent subgroups.

A unipotent transformation u of a finite-dimensional vector space V
is called regutar if the fixed space of u in V is 1-dimensional (equi-
valently, if the Jordan normal form of u consists of only one block).

LEMMA 2. Let .K be a field of characteristic p &#x3E; 2. Then for every
regular unipotent element u of S.L ( m, K ) , m &#x3E; 1, there exists an
involution h in GL(m, K) with uh = 2w1; if 1n is even then det (h) =
- (.r 1) 111/2 .

PROOF. With u also u-1 is regular, hence uh = u-1 for some h
in GL(m, K). Replacing h by its power, we may assume that h
is semisimple. Then h2 is a semisimple element commuting with u,
hence is a scalar transformation, i.e. there is some t with h2 (x) = tx
for all x in Km. Since h fixes the 1-dimensional fixed space of u, h
has an eigenvalue s in K. Then s2 = t, and by replacing h by s-lh7
we get h to be an involution.

For every i = 0, ... , m there is exactly one i-dimensional u-in-
variant subspace Wi of Hence these Wi must be fixed by h,. For

every I = 2, ..., m, the involution h induces in the 2-dimensional

space an involution hi which inverts the (non-trivial) trans-
formation induced by u; since p ~ 2, it follows that hi has both 1
and - 1 as eigenvalues. This proves the assertion on det (h) . (Note
that Wo C WI C ... C WnJ.

LEMMA 3. Let K be a field of characteristic p &#x3E; 2 and suppose that
n is either odd or divisible by 4. Then for every unipotent element u
of K) there exists an involution h in SL(n, K) with uk = u-1.

PROOF. By the Jordan normal form, .Kn is the direct sum of a

family of u-invariant subspaces, such that the restriction e+&#x3E;
of u to Eg is regular for every p. By Lemma 2 there exist involutions
h,~ E inverting u~ . These combine to yield an involution
h E GL(n, K) inverting u. If some has odd dimension, then we can
force det (h) = 1 by replacing h,~ by - (if necessary). If all of the

spaces E, have even dimension, then n is even, hence divisible by 4
(by assumption) and thus det
== (-1)n/2 ~ 1 (by Lemma 2).
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LEMMA 4. Let H be a field of characteristic 2. Then for every
unipotent element u of SL(m, K), m &#x3E; 1, there exists an involution h
in K) with uh - U-1.

PROOF. By the Jordan normal form we may assume that u is

regular. Then u is conjugate to the matrix with Uij = I if i = j
or ~===~ 2013 1 or 2 = ~ - 2 =1 (mod 2), and all other Uii == 0. We may
assume u = Setting hi~ = 1 if i = j or i = j -1 -1 (mod 2),
and all other haj = 0, the matrix h = (h2;) does the job.

LEMMA 5. Let I~ be a field of characteristic p &#x3E; 3. Then for every
unipotent element u of SL(m, K), m &#x3E; 1, there exists a diagonalizable
element h of K) normalizing u), such that

PROOF. First assume that we have already found a g E SL(m, K)
with all eigenvalues in K such that ug = u4. Then h : = is diag-
onalizable and
= 3(pm) # 0 (mod p) and u is of p-power order, it follows that u E h, 
hence the claim.

It remains to prove the existence of g. For this we may assume that
u is regular. Then u4 is also regular (since p # 2), hence there is some f
in GL(m, IT) with Uf = ~4. Then f fixes the spaces yYi (defined as in
the proof of Lemma 2) and we can again consider the action of f and u
in (i = 2, ... , m). Using the matrix identities

and

we conclude that if ci denotes the eigenvalue of f belonging to the
action of f in (i = 1, ..., m) then we have Ci == 4ei-, (for

thus does the job. q.e.d.

A finite group is called dihedral if it is generated by two elements
a, b subject to the relations ar = b2 = 1, ab = a-’, for some r &#x3E; 2.
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LEMMA 6. Let 99 be a lattice automorphism of G fixing all sub

groups of order 2 of a dihedral subgroup 8 of G. Then y fixes every
subgroup of ~’.

PROOF. Easy (see e.g. part (3) in the proof of Lemma 2 in [3]).
PROPOSITION 1. Suppose that if p = 3 then n is either odd or divis-

ible by 4. Then 0 every unipotent subgroup (i.e. of G.

PROOF. It suffices to show that 0 fixes every cyclic unipotent
subgroup u~ of G. We first consider the case p # 2. If furthermore n
is either odd or divisible by 4, then the claim follows from Lemma 3,
Lemma 1 (ii) and Lemma 6. Now suppose that n is not of this form;
then p ~ 3 (by assumption) and n &#x3E; 6. Hence it follows from Lemma 5
that there exists some h in G having n linearly independent fixed
points in Pn-1 and normalizing ~u~, such that h, u) = h, hu&#x3E; ; then 0
fixes h, u~ (by Lemma 1 (i) ), hence also u~, the only p-Sylow sub-
group 

It remains to consider the case p = 2. By Lemma 4 and Lemma 6,
it suffices to show that 0 fixes ~v~ for every involution v in G. As
follows from the Jordan normal form, v can be written as the product
of commuting elations vl , ... , vs E G (i.e. each v is an involution that
fixes a hyperplane of Pn-1 pointwise). Then Vr : _ ... , vs) carries
the structure of a GF(2)-vector space, which is generated by its 1-di-
mensional subspaces vi~ ; hence if ø fixes all the vi~, then 0 must
act trivially on the lattice of subgroups of V (by the fundamental
theorem of projective geometry) and will therefore fix v&#x3E;.

It remains to show that 0 fixes e~ for every elation e in G. Now
e lies in a subgroup SL(2, q) of G which can be constructed as
the groups Si in the proof of Lemma 1; hence (P fixes S and every
2-Sylow subgroup of ~S (since the 2-Sylow subgroups of S can be con-
structed as the groups Ui in the proof of Lemma 1). But then 0 fixes
every subgroup of ~S: This is clear if q == 2, and if q &#x3E; 2 it follows

from Metelli’s result [2] that every lattice automorphism of PSZ(2, q)
(= SL(2, q) in our case) is induced by a group automorphism. In

particular, O fixes e&#x3E;. q.e.d.

2. The main result.

LEMMA 7. Let p be a lattice automorphism of G fixing every cyclic
subgroup of G that acts reducibly in pn-1. Then It = id.
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PROOF. It suffices to show that 03BC fixes every maximal cyclic
subgroup T of G that acts irreducibly in Clearly y TI1 is also
maximal cyclic in G and acts irreducibly in (Note that J.l maps
cyclic groups to cyclic groups, see e.g. [4, Ch. I, Th. 2]). Let 81
(resp. 8~) denote the inverse image of T (resp. T~) in and

let M(n, q) denote the ring of n X n-matrices over k = It is
well-known that the centralizer Ki of 8i in _M(n, q) is a subfield of

q) with qn elements, and Si = X, r1 q) (i = 1, 2). Choosing
0 in the bijection B:K1 - kn sending h to endows kn with

the structure of a field F such that B becomes a field isomorphism.
Let Ao be the subgroup of GL(n, q) that acts on .F as the Galois group
of F over k. By the normal base theorem (see [1, p. 283]) Ao permutes
the elements of a base of kn (as k- vector space) , hence the group
A : = Ao) lies in q ) .

Ijet 8 be a generator of 81 and set c~ : _ [~S~l : D], m : = g.c.d. (d,
q2 - 1 ) (Remember that G = Then the group H: = A,
As, D) contains 8§J’ : = as a normal subgroup and is the

semi-direct product of S": and A (namely, let rx be the generator of A
with za = zq2 for all and note that 

Since A and AS act reducibly in pn-1, the image Ï1 of H in G is
fixed by f.1. Therefore with H we also have = H

implying that H. Set i : _ [~’i S2 : = ~’~ S2 ~1 Since

8§7 is a subset of KI that is centralized by the group n A,
it follows that lies in the subfield I of KI with = i.
But also lies in the field H2 , hence in Thus for

~ : _ [X~ : K~ r1 I] we get that I divides qn~~ - 1. But [8J" m
n 8;:1 === i-1IS;:I, , hence divides thus 

Computing [Xy ] = )8~ [ ig,c,d. (n1, ]8~[ ) and ~!=(~-1)~-1), ,ve

finally get

Below we are going to show that (+) implies j = 1, hence ~2
and ~i --- S2 , which finally means T = Tit. Then the Lemma is proved.

From (-P) we deduce
hence

First we exclude the case In this case (+ +)
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gives 2nw c qn-4  n, a contradiction. If j # n, then j  n/2 and (++)
gives 2-3+n(j-1)/j  n/2, hence 2-2+n(j-l)/J  n; if in addition n/2  - 2 +
+ n(j - 1)/j, then 2n/2  n implying that n  4 ; if n/2 &#x3E; - 2 + 
+ ~(~ 2013 1)~, then j2 or n9.

Now we know that either j  2 or n  9. But if j = 2 then (+ +)
gives 2-3+n!2  2, hence n  6. Thus we have either j = 1 or n  9.
From now on we assume j =1= 1 and reach a contradiction by considering
each Y1 £ 9 separately.

If n = 9, then j = 3 or j = 9, both of which contradicts (-1- + ).
Similarly f or n = 8 and n = 7 . If n = 6 = j or n = 6 = 2 j, then ( -E- +)
gives q = 2, contradicting (+). If n = 6 = 3 j, then (-1-) gives that.
q6 - 1 divides

hence q  5; checking all q ~ 5, one sees that ( -E- ) cannot be fulfilled.
If n == 5, then j = 5 and (++) gives q s 4, which again contra-

dicts (+). If n = 4 = j, then (+) gives that q4 - 1 divides 4(q - 1 ) -
. (q - 1) 2(q U- 1), hence q 2 + 1 divides 8(q - 1), which is impossible.
Similarly for ~=4=2~. Finally if n = 3, then j ---- 3 and (+) gives~
that q3 - 1 divides 3 ( q -1 ) ( q - 1 ) 3 = 9 ( q - 1 ) 2, which again is easily
seen to be impossible.

THEOREM. Suppose tha.t if q is a power of 3 then n is either odd
or divisible by 4..Z’hen the exceptional lattice automorphisms of G =
= q)jD (n &#x3E; 3) commute with the inner automorphisms of G and
f ix every unipotent subgroup of G.

REMARK. The exceptional lattice automorphisms also fix every
« diagonalizable » subgroup of G, if ~2 &#x3E; 5 (see Lemma 1 ) . Further-
more I want to remark that the case q = 3~’, ~~ = 2m with odd m,
cannot be handled with our methods; I do not know whether the
theorem remains valid in this case.

Proof. By Proposition 1 it only remains to show that every cp e 4k
commutes with the inner automorphisms of G. Fix some g E G and
set X~: = (((.X~)~)~-1~~’-~ for every subgroup X of G. Then It is an

exceptional lattice automorphism of G and we have to show that
p = id. By Lemma 7 it suffices to show that X,4 = X for every cyclic
subgroup X of G that acts reducibly in pn-l. Noting that X = XlX2,
where .~1 (resp. X2) denotes the group of semisimple (resp. unipotent
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elements of X, and applying Proposition 1 to .X2 and .3~ y we see that
we may assume X to consist only of semisimple elements.

By our assumptions on .,~’, there exist non-trivial X-invariant

subspaces R and S of kn with S. Let Q (resp. Q-) be the
stabilizer of R (resp. S) in G. Then X lies in L : = Q r1 Q-. The (pa-
rabolic) subgroups Q and Q- of G are generated by normalizers of
p-Sylow subgroups of G, hence 99 fixes Q and Q-, and thus also L;
the same reasoning shows that 99 fixes all conjugates of L. For the
maximal normal p-subgroup U (resp. Z7-) of Q (resp. Q-) we have
Q = U xi Z and Q- - II- XI I~~.

Claim 1. = for every u in U u U-.

By symmetry it suffices to consider the case u E U. From X = L n
n we get XW = Lv r1 (XU)fP = .L r1 (Xv U), hence n

On the other hand, hence (Xu) q,
Thus Claim 1 is proved.

Writing u == Ul U2 ... u, with Ul, ..., it, E ~’ U U-, we use induction
on r. The case r == 1 is just Claim 1. Now assume r &#x3E; 1. Then for

~ : = ~~ ... ur we have = = the latter equality
follows from the induction hypothesis. Since Claim 1 also holds if X,
U and U~ are replaced by their v-conjugates, we can continue as
follows: = = Thus Claim 2 is proved.

It is well-known that ~ U, ~7"~ = G (namely, it follows from the
~fact that  U, U-&#x3E; is normalized by U, U~ and L, hence by G) . Thus
it follows from Claim 2 that XII = .X. This was to be shown.

3. The case n = 3.

LEMMA 8. Tiet h be a semisimple element of S.L(3, q) which is not
-diagonalizable (over 1~) . Then every exceptional lattice automorphism
’fP of G = SL(3, q)/D fixes h~, where A denotes the image of h in G.

PROOF. The centralizer S of h in SL(3, q) is cyclic, hence it suffices
to show that (p fixes the image T of S in G.

CASE 1. S does not act irreducibly in k3.

Then S fixes (exactly) one 2-dimensional subspace .~ of k3, and the
restriction map S - GL(E) is injective. Let S0 denote the subgroup



216

of S consisting of those elements that map to /SLL(.B). Then ~So acts
irreducibly in .~ (Note that = q + 1 and therefore So cannot
embed into ~B{0}). Hence for the image To of So in G we get 
(where Go(To) denotes the centralizer of T o in G) .

There exists an involution f in SL(3, q) with sf = 8-1 for all s in So .
By Lemma 6 and Lemma 1 (ii) (if p # 2) resp. Proposition 1 (if p = 2),
it follows that y fixes T0. Hence T0  Tv. But with T also TQ’ is

cyclic, hence Tv  0,(TO) = T. Thus Tf/J === T.

CASE 2. ~S acts irreducibly in k3.
In this case the proof of Lemma 7 will show that Tv = Z’, provided.

we know that y fixes the image in G of the group A (and A8) occur-
ring in the proof of Lemma 7. But this follows as above from Lemma 6,
since there exists an involution in SL(3, q) acting on A by inversion.

COROLLARY. Let T be the image in G = SL(3, q)jD of the group
of diagonal matrices in SL(3, q). Then the group 0 of exceptional
lattice automorphisms of G fixes T, and the restriction map from 0
to the group of lattice automorphisms of T is injective.

PROOF. In the proof of Lemma 1 it was shown that 0 fixes T.
The rest of the claim follows from Lemma 8 and the Theorem.

In [5, sect. 3] we gave conditions for a lattice automorphism of 11’

to have an extension to an exceptional lattice automorphism of G.
Combining this with the above Corollary we can completely determine
the structure of 0 in certain cases: (A closer analysis would allow one
to determine 0 in many more cases.) Letting 8m denote the symmetric
group on m letters, we have

PROPOSITION 2. Suppose P is ac prime 1 (mod 12) and p - 1 is
square-free. Then the group 0 of exceptional lattice automorphisms of
SL(3, p) is isomorphic to

2vhere the n are defined from the odd prime ..

PROOF. In view of the above Corollary and [5, Prop. 3 and the
discussion following it], it suffices to verify the conditions (i)-(iv~
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from [5, Prop. 3] for every lattice automorphism A of T which is the
restriction of an exceptional lattice automorphism of SL(3, p ) . Con-

dition (i) holds by the above Theorem, (iii) follows from Lemma 1 (ii)
(since p - 1 =10 (mod 12)), (iv) follows from (ii) (since q = p is

prime) and finally (ii) is easily verified using (i) and the standard
arguments involving Lemma 6; we omit the details.

REMARK. (c~) In the above situation, y not only the structure of 0
as abstract group, but also its action on the subgroups of G can be
described explicitly, y see [5, sect. 3].

(b) There is some evidence that the groups SL(1L, q) for n &#x3E; 3
will not have such an abundance of exceptional lattice automorphisms;
e.g. in the case G = q) it can be shown with the above methods
that 0 is an elementary abelian 2-group (and is trivial if q is even or
q n 3 mod 4). It remains an open problem whether 0 can be non-
trivial for any n &#x3E; 4.

REFERENCES

[1] N. JACOBSON, Basic Algebra I, Freeman, San Francisco, 1974.

[2] C. METELLI, I gruppi semplici minimali sono individuati reticolarmente in
senso stretto, Rend. Sem. Mat. Univ. Padova, 45 (1971), pp. 367-378.

[3] R. SCHMIDT, Verbandsautomorphismen der alternierenden Gruppen, Math.
Z., 454 (1977), pp. 71-78.

[4] M. SUZUKI, Structure of a group and the structure of its lattice of subgroups,
Springer, Berlin - Göttingen - Heidelberg, 1956.

[5] H. VÖLKLEIN, On the lattice automorphisms of the finite Chevalley groups,
submitted to : Indagationes Math.

Manoscritto pervenuto in redazione il 16 luglio 1985.


