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On the Lattice Automorphisms of SL(%, ¢) and PSL(n, q).

HELMUT VOLKLEIN (*)

Introduction.

In a previous paper[5], a study of the lattice automorphisms
(= automorphisms of the lattice of subgroups) of the finite Chevalley
groups G has been begun. Starting-point was the fact that if
rank (@) = 2 (and if some exceptional cases are excluded), then for
the group A(@) of lattice automorphisms of G we have

(+)  A@) ~Aut (@)X D

where @ is the kernel of the action of A(@) on the Tits building of G.
For a large class of simple Chevalley groups G (essentially those whose
Weyl group has a non-trivial center), it was shown that @ is trivial,
i.e. every lattice automorphism is induced by a group auto-
morphism. However, the groups PSL(n,q) do not belong to this
class, and in fact it was shown that @ is not even solvable for many
of the groups PSL(3,q). This phenomenon motivated the present
paper, where we take a closer look at the groups G = PSL(n,q),
n=3. (In the case n =2 and ¢ >3, we have A(@)=Aut(G) by
Metelli [2]).

‘We show that if we exclude the case that q is a power of 3 and
n = 2m with m odd, then @ commutes with the inner automorphisms
of G and fixes every unipotent subgroup of &. This allows one to

(*) Indirizzo dell’A.: Dept. of Mathematics, University of Florida, Gaines-
ville, Florida 32611, U.S.A.
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determine the exact structure of @ for certain of the groups PSL(3, q).
It remains an open problem whether @ can be non-trivial for any of
the groups PSL(n,q), n > 3.

Notations.

For elements x, ¥ of a group G we set y*.= x~'yx; the same if y
is a subgroup of G. If A, B, C,... are elements or subgroups of G,
we let (A, B, C,...> denote the subgroup of G generated by them.
The following notations will be fixed throughout the paper: ¢ is a
power of the prime p, k = GF(q) is the field with ¢ elements, D is
a central subgroup of SL(n,q), n =3, and G = SL(n, q)/D.

We regard SL(n, q) as a matrix group which acts on the k-vector
space k» in the canonical way; then G acts naturally on the (n —1)-
dimensional projective space P! over k.

Preliminaries.

Since G is perfect, every lattice automorphism of G preserves the
orders of the subgroups of G (see [4, Ch. II, Th. 8]); this will be used
constantly in the following (without further reference). In particular,
it implies that the group A(G) of lattice automorphisms of G acts on
the set of p-Sylow subgroups of G and on the Tits building of & (see [5,
sect. 1]); it is easy to see that the kernels of these two actions coincide,
and this common kernel will be denoted by @. To state it explicitly,
@ is the (normal) subgroup of A(@) consisting of those lattice auto-
morphisms of G that fix every p-Sylow subgroup of G; the elements
of @ will be called exceptional lattice automorphisms of G.

In our situation, the Tits building of G is isomorphic to the flag
complex of P»-1 and thus (4-) follows from classical projective geometry.
But nothing of this will be needed in the following, since we ex-
clusively study the group @. This is done in a completely elementary
fashion; therefore we avoid using the language of algebraic groups,
although it would be helpful at some points.

LemmA 1. (i) If n = 5, then @ fixes all subgroups of @ that have n
linearly independent fixed points in P»-1,
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(i) If p % 2, then @ fixes every subgroup J of G which is the
image of a subgroup of order 2 of SL(n,q).

Proor. Let P,,..., P, be linearly independent points of P,
let r; be an element of G interchanging P,, P;,, and fixing the other
Pys (for i =1,...,n—1), and let U (resp. U") be the group of those
p-elements of G that fix all the spaces P, 4 ... + P, (resp. P, +
4+ ...+ P, fori=1,...,n—1. Since U and U~ are p-Sylow sub-
groups of G, @ fixes the groups U,.= UN(U")* and U; .= U~ N
N U7, hence also S,:= (U;, U;) (== SL(2,q)).

(i) The normalizer No(U) of U in G is the largest subgroup
of G containing U but no other p-Sylow subgroup of G. Hence @
fixes Ng(U), and analogously N(U™), thus also T':= Ng(U) N N(U™).
It is well-known that 7 is the group of all elements of G that fix
P,,...,P,. Hence it suffices to show that @ fixes every subgroup
of T.

Now T is generated by the groups 7,:=TnNA8; (¢t =1,...,n—1),
which are fixed by @ and are all isomorphic to the multiplicative group
of k. Furthermore we have (T,...,T, > =T, X...XT,_,, hence
if n = 5 then the (abelian) group 7' contains at least three independent
elements of each occurring order; from this it follows by a theorem
of Baer (see [4, Ch. II, Th. 2]) that if 7'(!) denotes the I-torsion sub-
group of T for a prime I, then every lattice automorphism of 7'(I)
is induced by a group automorphism. This shows that for every ¢ € @
there is an automorphism f of 7 with X7= Xv for all subgroups X of 7.

Now consider the restriction of f to Y:.= (T,, T.,,>, where
1 =<¢=<mn—2. The three cyclic subgroups T;, T, , and (7,.,)" of ¥
are fixed by f (Note that (T.,,)" arises in the same way as the T,’s
when we renumber the P,’s appropriately) and Y is the direct product
of any two of them; hence f acts equivalently in all three. Thus f
acts equivalently in all the 7';’s, which means that there is some integer
m with f(t) = t™ for all ¢t in 7. Hence f, and thus also ¢, fixes every
subgroup of 7. This proves (i).

(ii) By the above, we can assume n < 4. Then J is either the
center of some S; (for a suitable choice of P,, ..., P,), or the unique
central subgroup of order 2 of G. Hence J is fixed by & (see e.g. state-
ment (+) in the proof of Lemma 1 in [5]).

REMARK. Lemma 1 (i) fails drastically in the case n = 3, see [5,
sect. 3].
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1. Unipotent subgroups.

A unipotent transformation « of a finite-dimensional vector space V
is called regular if the fixed space of % in V is 1-dimensional (equi-
valently, if the Jordan normal form of u consists of only one block).

LeEMMA 2. Let K be a field of characteristic p > 2. Then for every
regular unipotent element % of SL(m, K), m =1, there exists an
involution h in GL(m, K) with u*» = «'; if m is even then det (k) =
= (= 1),

Proor. With » also u~' is regular, hence u* = u~! for some &
in GL(m, K). Replacing h by its p™-th power, we may assume that &
is semisimple. Then h? is a semisimple element commuting with wu,
hence is a scalar transformation, ¢.e. there is some ¢ € K with h%(x) = tx
for all # in K= Since h fixes the 1-dimensional fixed space of u,
has an eigenvalue s in K. Then s? = ¢, and by replacing k by sk,
we get h to be an involution.

For every ¢ =0,..., m there is exactly one ¢-dimensional u-in-
variant subspace W, of K. Hence these W, must be fixed by #. For
every ¢ =2,...,m, the involution » induces in the 2-dimensional
space W;/W,_, an involution h; which inverts the (non-trivial) trans-
formation induced by u; since p 7% 2, it follows that h; has both 1
and — 1 as eigenvalues. This proves the assertion on det (k). (Note
that Woc W,c...c W,).

LeMMA 3. Let K be a field of characteristic p > 2 and suppose that
n is either odd or divisible by 4. Then for every unipotent element
of SL(n, K) there exists an involution h in SL(n, K) with u* = w1,

Proor. By the Jordan normal form, K» is the direct sum of a
family (#,) of u-invariant subspaces, such that the restriction wu,
of u to E, is regular for every 4. By Lemma 2 there exist involutions
hy€ GL(Ey) inverting w,. These h, combine to yield an involution
h e G@L(n, K) inverting w. If some E, has odd dimension, then we can
force det (h) = 1 by replacing %, by — k, (if necessary). If all of the
spaces E, have even dimension, then n is even, hence divisible by 4
(by assumption) and thus det (k) = [] det (h,) = [] (— 1)3mE)2 =
= (—1)"2 =1 (by Lemma 2). # u
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LEMMA 4. Let K be a field of characteristic 2. Then for every
unipotent element # of SL(m, K), m = 1, there exists an involution h
in SL(m, K) with u* = »~1.

Proor. By the Jordan normal form we may assume that « is
regular. Then « is conjugate to the matrix (u;;) with u,; =1if i =
ori=j—1or ¢=7—2=1 (mod 2), and all other »,; = 0. We may
assume % = (u;;). Setting h; =1 if ¢ =j or ¢ =j—1 =1 (mod 2),
and all other h;; = 0, the matrix h = (h;;) does the job.

LeMMA 5. Let K be a field of characteristic p > 3. Then for every
unipotent element u of SL(m, K), m = 1, there exists a diagonalizable
element h of SL(m, K) normalizing {(u), such that

<hy hu> = <h’7 u> .

Proor. First assume that we have already found a g € SL(m, K)
with all eigenvalues in K such that u?= 4. Then h:= g®™ is diag-
onalizable and ws® -1 = y~1y» = (h-1)*h e (b, b*). Since 40™ —1 =
= 3™ = 0 (mod p) and « is of p-power order, it follows that w € (h, h*),
hence the claim.

It remains to prove the existence of g. For this we may assume that
« is regular. Then «* is also regular (since p # 2), hence there is some f
in GL(m, K) with / = u*. Then f fixes the spaces W, (defined as in
the proof of Lemma 2) and we can again consider the action of f and «
in W,/W,_, (¢ =2,..., m). Using the matrix identities

;1 t\! 1 1 c;in  t\ (1 eciei
0 c; 1 0 ¢;]  \0 1
11y (1 4
o 1) \o 1)’

we conclude that if ¢; denotes the eigenvalue of f belonging to the
action of f in W,/W,_, (¢ =1,..., m) then we have ¢; = 4¢,_;, (for

i=2,...,m). Hence det(f) =¢...c, = 4™Vl = (2m-1¢,)m and
thus g:= 2-m+1¢;'f does the job. q.e.d.

(=]

and

A finite group is called dihedral if it is generated by two elements
a, b subject to the relations a* = b2 =1, a®* = a1, for some r = 2.
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LeMMmA 6. Let ¢ be a lattice automorphism of @ fixing all sub
groups of order 2 of a dihedral subgroup S of G. Then ¢ fixes every
subgroup of 8.

Proor. Easy (see e.g. part (3) in the proof of Lemma 2 in [3]).

ProrosiTIOoN 1. Suppose that if p = 3 then n is either odd or divis-
ible by 4. Then D fizes every unipotent subgroup (i.e. p-subgroup) of Q.

Proor. It suffices to show that @ fixes every cyclic unipotent
subgroup <u) of G. We first consider the case p s 2. If furthermore »
is either odd or divisible by 4, then the claim follows from Lemma 3,
Lemma 1 (ii) and Lemma 6. Now suppose that n is not of this form;
then p = 3 (by assumption) and n = 6. Hence it follows from Lemma 5
that there exists some h in G having » linearly independent fixed
points in P! and normalizing {u)>, such that {h, u> = {h, h¥*); then @
fixes <h,u) (by Lemma 1 (i)), hence also (), the only p-Sylow sub-
group of <h,u).

It remains to consider the case p = 2. By Lemma 4 and Lemma 6,
it suffices to show that @ fixes (v) for every involution v in G. As
follows from the Jordan normal form, v can be written as the product
of commuting elations v,, ..., v,€ G (i.e. each v, is an involution that
fixes a hyperplane of P*—! pointwise). Then V:= {v,,..., v,> carries
the structure of a GF(2)-vector space, which is generated by its 1-di-
mensional subspaces <(v,>; hence if @ fixes all the (v,>, then @ must
act trivially on the lattice of subgroups of V (by the fundamental
theorem of projective geometry) and will therefore fix (v).

It remains to show that @ fixes {e¢)> for every elation ¢ in G. Now
¢ lies in a subgroup S=~SL(2,q) of G which can be constructed as
the groups 8, in the proof of Lemma 1; hence @ fixes S and every
2-Sylow subgroup of 8 (since the 2-Sylow subgroups of S can be con-
structed as the groups U, in the proof of Lemma 1). But then @ fixes
every subgroup of §: This is clear if ¢ = 2, and if ¢ > 2 it follows
from Metelli’s result [2] that every lattice automorphism of PSL(2, q)
(= SL(2, q) in our case) is induced by a group automorphism. In
particular, @ fixes {¢). q.e.d.

2. The main result.

LeEMMA 7. Let u be a lattice automorphism of G fixing every cyclic
subgroup of G that acts reducibly in P»-!. Then u = id.
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Proor. It suffices to show that p fixes every maximal cyeclic
subgroup 7 of G that acts irreducibly in P»—!. Clearly, T* is also
maximal cyclic in G and acts irreducibly in P»—' (Note that u maps
cyclic groups to cyclic groups, see e.g. [4, Ch. I, Th. 2]). Let 8,
(resp. S,) denote the inverse image of T (resp. T*) in SL(n,q), and
let M(n,q) denote the ring of »Xn-matrices over k = GF(q). It is
well-known that the centralizer K, of §, in M(n,q) is a subfield of
M(n, q) with ¢* elements, and 8, = K, N SL(n, q) (¢ = 1,2). Choosing
x # 0 in k», the bijection §:K, — k* sending h to h(x) endows k* with
the structure of a field F' such that § becomes a field isomorphism.
Let A, be the subgroup of GL(n, q) that acts on F as the Galois group
of F over k. By the normal base theorem (see [1, p. 283]) A4, permutes
the elements of a base of k" (as k-vector space), hence the group
A= {a*.a € Ay} lies in SL(n, q).

Let s be a generator of S, and set d:.=[8,:D], m:= g.c.d. (d,
¢®* — 1) (Remember that G = SL(n, q)/D). Then the group H:= (A4,
As, D) contains S7:= {#":x € 8,} as a normal subgroup and is the
semi-direct product of ST and A (namely, let « be the generator of A
with 2= 27" for all z€ K, and note that (a ) o= s's¥=s""1).

Since A and A° act reducibly in P»-1, the image H of H in G is
fixed by u. Therefore with 7™ < H we also have (T#)m = (T™ < H
implying that Sy < H. Set .= [878;:87]= (808, N A|. Since
St N 87 is a subset of K, that is centralized by the group S7'S; N A4,
it follows that 87 M 87 lies in the subfield I of K, with [K,.I]=i.
But 87N 87 also lies in the field K,, hence in K, I. Thus for
j.=[K,.K,NI] we get that |S; N 8y| divides ¢*" — 1. But |87 N
N 8y = 17187, hence |S}| divides i(¢q*’—1), thus also j(¢"’ —1).
Computing |S}'| = |8,|/g.c.d.(m, |S,|) and [S,| = (¢ —1)/(¢ —1), we
finally get

.« . . . n o__. 1
(=) q"— 1 divides j(g" — 1) (¢ — 1) g.c.d. (qz___ 1, ‘JE___])

Below we are going to show that (4 ) implies j = 1, hence K, = K,
and S8; = 8,, which finally means 7' = T%. Then the Lemma is proved.

i—1
From () we deduce ¢ui-vi< ¥ gnMi= (¢»—1)/(¢"—1)< jg,
hence A=o

(++) q73+n(i41)/f < ? .

First we exclude the case that j =n > 6: In this case ()
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gives 24 < ¢t << m, a contradiction. If j = n, then j < n/2 and (4 +)
gives 2-3+10-1/i < /2, hence 22—V < n; if in addition n/2 < —2 -
+ n(j — 1)/j, then 272 < n implying that n < 4; if n/2>—2 }
+ n(j —1)/j, then <2 or n < 9.

Now we know that either j < 2 or n < 9. But if j = 2 then (++)
gives 2-3+t7/2 << 2, hence n < 6. Thus we have either j =1 or n < 9.
From now on we assume j = 1 and reach a contradiction by considering
each n < 9 separately.

If n =9, then j =3 or j = 9, both of which contradicts (4 ).
Similarly forn = 8andn = 7. If n = 6 = jorn = 6 = 2§, then (++)
gives ¢ = 2, contradicting (+). If n = 6 = 3§, then () gives that
q® — 1 divides

2(¢*—1)(¢—1)3(¢ +1) = 6(¢® — 1)(¢* — 1) < 6¢°,

hence ¢ < 5; checking all ¢ < 5, one sees that () cannot be fulfilled.
If n =25, then j =5 and (4 +) gives ¢ =4, which again contra-
diets (+). If » = 4 = j, then (+) gives that ¢* — 1 divides 4(¢ — 1)-
‘(¢ —1)2(¢g 4- 1), hence ¢* + 1 divides 8(¢ — 1), which is impossible.
Similarly for » = 4 = 2j. Finally if n» = 3, then j = 3 and (+) gives
that ¢® — 1 divides 3(¢ —1)(¢ — 1)3 = 9(¢ — 1)2, which again is easily
seen to be impossible.

THEOREM. Suppose that if q is a power of 3 then n is either odd
or divisible by 4. Then the exceptional lattice automorphisms of G =
= SL(n, q)/D (n = 3) commute with the inner automorphisms of G and
fix every unipotent subgroup of G.

REMARK. The exceptional lattice automorphisms also fix every
« diagonalizable » subgroup of @, if n =5 (see Lemma 1). Further-
more I want to remark that the case ¢ = 37, n = 2m with odd m,
cannot be handled with our methods; I do not know whether the
theorem remains valid in this case.

Proof. By Proposition 1 it only remains to show that every ¢ € &
commutes with the inner automorphisms of . Fix some ge G and
set Xu:= (((X"’)")‘P")”"l for every subgroup X of G. Then u is an
exceptional lattice automorphism of G and we have to show that
p = id. By Lemma 7 it suffices to show that X# = X for every cyclic
subgroup X of @ that acts reducibly in P»-!. Noting that X = X, X,,
where X, (resp. X,) denotes the group of semisimple (resp. unipotent)
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elements of X, and applying Proposition 1 to X, and X7, we see that
we may assume X to consist only of semisimple elements.

By our assumptions on X, there exist non-trivial X-invariant
subspaces R and S of k» with k»= R ® 8. Let @ (resp. @) be the
stabilizer of B (resp. S) in ¢. Then X lies in L:=@Q N Q. The (pa-
rabolic) subgroups @ and @~ of G are generated by normalizers of
p-Sylow subgroups of G, hence ¢ fixes @ and @, and thus also L;
the same reasoning shows that ¢ fixes all conjugates of L. For the
maximal normal p-subgroup U (resp. U~) of @ (resp. Q~) we have
Q=U XL and Q- = U~ X L.

Claim 1. (X9)* = (X*)? for every w in Uu U™.

By symmetry it suffices to consider the case v € U. From X = LN
N(XTU) we get X¢ = LoN (XU)? = LN (X?U), hence (X®)* = I*N
N (XeU). On the other hand, X*= L*N (XU), hence (X*)¢ =
= (I*)*N (XU)?» = L*N (X°U). Thus Claim 1 is proved.

CLAIM 2. (Xo)* = (X*)® for every u e (U, U).

Writing % = 4, %,... %, with %, ..., v, € U U U, we use induction
on r. The case r =1 is just Claim 1. Now assume 7 > 1. Then for
9= t,...u, we have (X7)* = (Xo)™ = ((X*)9)*; the latter equality
follows from the induction hypothesis. Since Claim 1 also holds if X,
U and U~ are replaced by their v-conjugates, we can continue as
follows: ((X*)¢)*' = ((X*)*)e = (X*)e. Thus Claim 2 is proved.

It is well-known that <U, U~) = G (namely, it follows from the
fact that <U, U™) is normalized by U, U~ and L, hence by G). Thus
it follows from Claim 2 that X# = X. This was to be shown.

3. The case n = 3.

LeEMMA 8. Let h be a semisimple element of SL(3, ¢) which is not
diagonalizable (over k). Then every exceptional lattice automorphism
@ of G = SL(3, q)/D fixes <h), where h denotes the image of » in G.

ProoF. The centralizer S of h in SL(3, q) is cyelic, hence it suffices
to show that ¢ fixes the image T of § in G.

CASE 1. S does not act irreducibly in k3.
Then S fixes (exactly) one 2-dimensional subspace E of k3, and the
restriction map § — GL(F) is injective. Let §, denote the subgroup
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of § consisting of those elements that map to SL(E). Then §, acts
irreducibly in E (Note that |S;|=g¢ + 1 and therefore S, cannot
embed into ¥\ {0}). Hence for the image T, of S, in G we get Co(T,)=T
(where C4(T,) denotes the centralizer of T, in G).

There exists an involution f in SL(3, ¢) with s/ = s~ for all s in S,.
By Lemma 6 and Lemma 1 (ii) (if p 5= 2) resp. Proposition 1 (if p = 2),
it follows that ¢ fixes T,. Hence 7, < T¢. But with T also T? is
cyclie, hence 7? < Cy(Ty) = T. Thus Te = T.

CAsE 2. 8 acts irreducibly in 3.

In this case the proof of Lemma 7 will show that 7¢ = T, provided
we know that ¢ fixes the image in G of the group A (and A?) occur-
ring in the proof of Lemma 7. But this follows as above from Lemma 6,
since there exists an involution in SIL(3, ¢) acting on A by inversion.

COROLLARY. Let T be the image in G = SL(3, q)/D of the group
of diagonal matrices in SL(3,q). Then the group @ of exceptional
lattice automorphisms of G fixes 7', and the restriction map from @
to the group of lattice automorphisms of 7' is injective.

Proor. In the proof of Lemma 1 it was shown that @ fixes 7.
The rest of the claim follows from Lemma 8 and the Theorem.

In [5, sect. 3] we gave conditions for a lattice automorphism of 7"
to have an extension to an exceptional lattice automorphism of G.
Combining this with the above Corollary we can completely determine
the structure of @ in certain cases: (A closer analysis would allow one
to determine @ in many more cases.) Letting S,, denote the symmetric
group on m letters, we have

ProposITION 2. Suppose P is a prime = — 1 (mod 12) and p — 1 is
square-free. Then the group D of exceptional lattice automorphisms of
SL(3, p) is isomorphic to

r

H (SB)”‘ X Sm?

=1

where the n; are defined from the odd prime divisors p,, ..., p, of p —1
by n;:= (p,— 7)/6 if p,=1 (mod 3) and n,:= (p, — 5)/6 if p,=—1
(mod 3).

Proor. In view of the above Corollary and [5, Prop. 3 and the
discussion following it], it suffices to verify the conditions (i)-(iv)
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from [5, Prop. 3] for every lattice automorphism A of 7' which is the
restriction of an exceptional lattice automorphism of SL(3,p). Con-
dition (i) holds by the above Theorem, (iii) follows from Lemma 1 (ii)
(since p —1 =10 (mod 12)), (iv) follows from (ii) (since ¢=p is
prime) and finally (ii) is easily verified using (i) and the standard
arguments involving Lemma 6; we omit the details.

REMARK. (a) In the above situation, not only the structure of @
as abstract group, but also its action on the subgroups of G can be
deseribed explicitly, see [5, sect. 3].

(b) There is some evidence that the groups SL(n,q) for n >3
will not have such an abundance of exceptional lattice automorphisms;
e.g. in the case G = SL(4, q) it can be shown with the above methods
that @ is an elementary abelian 2-group (and is trivial if ¢ is even or
¢ =3 mod 4). It remains an open problem whether @ can be non-
trivial for any » = 4.
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