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Su Pesistenza della soluzione per la flessione
delle piastre elastiche micropolari

CHRISTIAN CONSTANDA (*)

1. — A. C. Eringen [1] ed A. E. Green e P. M. Naghdi [2] hanno
stabilito le equazioni della teoria delle piastre elastiche micropolari,
supponendo che gli spostamenti u; e le microrotazioni ¢; (i =1, 2, 3)
abbiano la forma

U, = s (), @) + @4 Uy (By, @) 5 Uy = w (%, 3,),

@ = @; (@1 ,%,) , (0 =1,2).

Vista la linearita della teoria, si dimostra che il problema generale
pud essere decomposto in altri due: il problema della tensione
piana, caratterizzato dalle funzioni ugo’ , @3, ed il problema della
flessione, caratterizzato dalle funzioni v,, w, ¢,. Questlultimo e
stato studiato con l’aiuto della variabile complessa in [3]. In questo
articolo ci si propone di stabilire per il problema della flessione,
attraverso metodi variazionali, un teorema su l’esistenza e ’unicita
di una soluzione debole nel senso di [4].

Se si nota: D — il dominio della sezione mediana (nel piano
23 02,) ; ¢ — la sua frontiera, di cui la normale esterna unitaria
n(ng, M) ; hy — lo spessore costante della piastra; h = hy/J12;
t;; — le tensioni; my — le coppie delle tensioni; f; — le forze della
massa ; g; — le coppie della massa; a, f, y,%, 4, p — le costanti
elastiche del materiale ; se si considera che gli indici greei prendono
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i valori 1,2 e se si accetta la convenzione di sommare gli indici
ripetuti, allora le equazioni dell’equilibrio sul problema della fles-
sione sono [1]:

@) Lu=F,
dove

U= (Vg,0,W @1,¢0)y F = (D, D35P) 1+ %))

Lu = (4, u, Ayu, Au, Byu, Byu),
— A =B 4 p)v, 5, + BB + %)V, 5 — (H+2)0, + BEyQPs — BW,,
—Au= (1 + %)Wy + P55 + %Eg, P09
— Bu = (a + B)@s o + Vo006 T %E5(V; — Wy,) — 22¢,
0

o,

b, =dJdif, + Hytyy, p = Jofs + Holyz 5 4, = Jo g, + Homy, ,

()rg =

() s &1y = € =0, &5 = — &y =1,

+ho/2

1 1 Zg=+ho/2 .
Ji'll) = T / wﬁzp da® ) Hi’lp = h— l:w:’(pjl (I = 0,1).
0 e 0 Zg=—ho/2
— vy,

-

2. — Si possono facilmente ottenere le formule di Betti [5]:

(2) /yLyda:hi/E(y)da—f%Tyds,
b 0D c

3) f (uLy — vLu)da = f (0T — uTv)ds,
D c

dove w, v sono delle funzioni vettoriali regolari, E(u) & la densita
d’energia interna

(4) E(uw) =hy(E, + E, + E,),

El = 2’”@,9 ’Uo',a + (lu + ”) ’ve,a vg,a + Iuvg,a /Uo',g ’
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(B) By = ag,, oo + BPoc Poe T YPorc Poro
E3

= (u+%) (v, 9, +w,, w,,) + 2xp, @, + 2xe,, ¢, (W, , — v,) +
+ 2pv, w, ,

T?]' = (Nfﬁh Nz??’ Ny, M1"!, Mz?!)a
Nu =n it

ey NU =gty Mu =mndgmg, .

3. — Si considera una piastra incastrata, dunque sul contorno
della quale sono date le seguenti condizioni al limite :

(6) =0 suc.
Si introduce l’insieme dei vettori

U = {ue[C¥D)n CAD U e)] X... X[CAD)U C°(DU ¢)], u verifica (6)}

e

b5 volte

e si organizza U come uno spazio Hilbert reale con laiuto della
norma

||/,!||2 = (uu) = f(vg v, + w? + ¥, q)g) da .

LeMMA. Se la forma quadratica o(¢, §) = a;; &, &, (4, =1,2,...,0),
dove a;; sono costanti, ¢ positivamente definita, allora esiste una
costante v, > 0 tale che

(7 w (&8 =6 &,
qualunque sia il vettore &(&,,&,,...,¢&,) .
TEOREMA 1. Se
22 4+2u +%2>0,2u +x>0,x2>0,

(8)
20+ +y>0,y+B>0,y—F>0,
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allora
a) per ogni coppia di vettori u,» di U si ha-
® (w, In) = (0, L)
b) esiste una costante k2 (che dipende da D) tale che si ha
(10) (u, Lu) > k*|u|?, qualunque sia il vettore w € U .
D1MOSTRAZIONE. La proprietd (9) risulta da (3). Per stabilire (10)

si utilizza la lemma precedente, (4), (5), (8) e I’ineguaglianza di Frie-
drichs, che ha luogo per ogni funzione peC'(D)n Co(Dn e,

py=0suc:
/-w,a'lp,a da > k2 /wz da,
D’ D
dove la costante kj dipende da D.
Si ha successivamente :

= (A 4+ 2u + %) (O%J + "’%,2) + 21'01,1 Va2 + (1 + %) ("7%,2 -+ ’0%,1) +
+ 2p0; 505, = ”% (W3, + v3) +v3(v], 4 v3,),

h? E, da.>k[vgve da, k2 = B2 kZ min (»%, »3);

o

By,=(a+ B+ (92, + @32 + 2a9,, @55 + ¥ (@20 + ¢3,) +
+ 2139”1,2 P12 v3 (¢}, + ‘P%,z) + 3 (‘P%,z +931)

E, da > k%/% @, da , k§ = k§ min (v3, v3) ;
D

By, = (u + %) (u? + ud 4+ w? + wd) — 2u (uy wy + uy w,) ,

o —

[uy = @1 —wyp, Uy = @y +Wyy 5 Wy = @1 +Vyy Wy =@, — V],

2 2 .
By = v (u, u, + w,w,) = v3u, %, ;



Su D’esistenza della soluzione per la flessione ece. 153
2 / B(u) da = 2h, / (BB, + Ey + By)da> hok2 / (0,9, + Py ¥, +1,%,) da
D D D

= hokg/[vevg + 29,9, +w,,w, , + 2(p wy; — @, w,,)] da,
D
k% = 2min (k%, k3, 93);

2fE () da > hokif (99, + @ Py + Wy, wy,) da = ho k2 [|uf?.
D D

Vista (2), si ottiene la relazione (10).
4. — Si introduce il funzionale quadratico
¥ (u) = (u, L) — 2(u, F),
e si nota con U, la chiusura di U in rapporto alla norma
|ul* = Tw, ] = (%, Lu).

Se Fe L, (D) X ... X Ly(D) e se si considera ¥(u) definita su U,,
b volte

si ottiene [4]:

TEOREMA 2. Esiste un vettore unico w,e U, per il quale ¥(u)
realizza il suo valore minimo. Questo vettore & il limite in media
della sequenza degli approssimanti di Ritz.

Allora uye Wy(D) — lo spazio delle funzioni aventi derivate
generalizzate (ai sensi delle distribuzioni) del primo ordine, di cui
il quadrato & integrabile su D, e, dunque, w, & la soluzione debole,

nel senso di [4], del problema.

BIBLIOGRAFIA

[1] A. C. ErRINGEN, Z.A.M.P., 18, 1967, p. 12.

[2] A. E. GrREEN e P. M. NagHDI, Quart. J. Mech. Appl. Math., 20,
1967, p. 2.

[3] C. ConsTanDa, C. R. Acad. Sci. Paris, série A, 278, 1974, p. 1267.

[4] S. G. MIKHLIN, Il problema del minimo dei funzionali quadratici (in
lingua russa), Mosca-Leningrado, 1952.

[6] C. ConsTaNDA, Letters Appl. Engng. Seci., 2, 1974, p. 329.

Manoscritto pervenuto in redazione il 2 luglio 1977.



