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ReExDp. SEm. Mat. UNiv. Papova, Vol. 49 (1973)

On the Existence of Multiple Solutions
for a Class of Nonlinear Boundary Value Problems.

ANTONIO AMBROSETTI (*)

1. In a recent paper J. A. Hempel [3] has proved the existence
of multiple (proper) solutions for the following nonlinear, variational
boundary value problem

(1) Ek aimi (a,-,k(w) %) + o(@) u(w) — b(w, u(z)) = 0

Ulog =0

where 2cR" is a bounded open set with boundary 002 and a,,(x),
c(x) and b(x,t) are functions which satisfy suitable hypothesis.

The main purpose of this paper is to prove that Hempel’s result
is true if (under the same assumptions on a, () and ¢(x)) b(x, t) satisfies
only parity and asymptotic conditions. No monotony and positivity
hypothesis are required, and moreover the existence of the second
derivative is not supposed. The method used in the proof is com-
pletely different from Hempel’s one and appears natural enough:
we remark that the solutions of (1) are the free critical points of a
suitable functional f on the Hilbert space WI(Q), and we prove
that these critical points belong to an open subset of WI(Q), ‘which
is bounded and homotopically nontrivial. The critical points of f

(*) Indirizzo dell’A.: Istituto Matematico « L. Tonelli» - Via Derna, 1 -
56100 Pisa.

Lavoro eseguito con contributo del C.N.R. nell’ambito del Gruppo Nazio-
nale per I’Analisi Funzionale e le sue Applicazioni,
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on this open set are studied by means of Lusternik-Schnirelman
theory ((2], [4], [5], [1]).

2. Let 2 be a bounded open subset of R*; we denote by 0 its
boundary and by z = (=, ..., #,) a point in 2. Consider the boundary
value problem

P

(1) % 0T,
Ulag =0

(ai,lc(x) %) -+ e(@) u(r) — b(‘”, u(w)) =0

and suppose that the functions a, (), ¢(x) and b(x, t) satisfy the fol-
lowing assumptions:

a) a;x(x) = a,,;(x) are bounded measurable functions, such that
q,, A,y Ay > A, > 0, for which:

/11]5]2< z a, () & §k</12|§|2

b) c(w) e Le(2) with o> n/2; ¢(x)>0 on 2 and c¢(x)>0 on a set
of positive measure on Q;

¢) for all ¢ b(x, 1) is measurable in z; for almost all x€ 2 b(x, t)
is of class C! in ¢;

d) for almost all x€ 2, we have: b(x, —t) = — b(z, t);
e) setting a(w,t) =t-1b(x,t), we have (for almost all € 2):

lim a(z,t) =0 lim o, t)>c(x);
t—>0 t—>t-o

N b, )| <ma(@) + Euft]y [bi(@, ) [ <ma(@) + Ky [t[ (*), with my(a) €

e L*em(Q), my(x) € L*2(Q) and r < ((n+ 2)/(n —2)) for
n> 2 and r arbitrary for n<2.

Let ﬁ’l(.Q) the Hilbert space obtained as closure of the class D(£2)
of infinitely differentiable functions with compact support in £2, under

ob(a, t
(*) byl ) = (a“; ),
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fuz(w)dw _'_fz (g:)zdw
2 Q2 ! !

for all u, ve Wi(RQ), we set

the norm

ou ov

ox; 0xy

(2) ((u, ”)) = ‘Z a; 1()
PRz

((--.)) is a scalar product in W(Q) and the norm [u|* = ((u, u)) is
equivalent to the usual norm. We denote by B the operator of VT“(.Q)
in itself defined by:

(Bu, v)) =fb(a¢, uw(@))v(@)dr, Vve Wi(Q)

Q

and by C the (linear) operator

(Cu, v) = {c(w) wo)o(@)dw, YoeWyQ).

Q

Then the generalized solutions of (1) are the elements u of W’(.Q)
such that

(3) u—Cu+ Bu=0
First of all we observe that Bu = grad h(u) with

h(u) :fdsfb (2, su(x)) u(z)de

Q

and therefoore that the solutions of (3) are the critical points of the fune
tional f: W' Q) — R, defined by

(4) f(u) = }ul®— 3(Cu, w)) + h(u) .

From the conditions on the functions ¢(x) and b(z, t) we may deduce
the following properties for the functional f and its gradient:
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— f is of class C?;
— f is even;
— (O is a compact, positive self-adjoint operator and B is compact;

— f is weakly continuous and bounded on every bounded set of W‘(.Q).

Moreover f satisfies on every bounded set of Vf’l(.Q) the following
condition (given by Palais-Smale):

ConpITION (P-S). If u, 98 a sequence such that f(u,) is bounded
and gradf(u,) — 0, then u, has a converging subsequence.

In fact, if u, is a bounded sequence such that gradf(u,) —0,
since B and C are compact, there exists a subsequence (which we
shall still denote by u,) such that Cu, — Bu, is converging. Then
u, = grad f(u,) + Cu, — Bu, is converging too.

Together with (P-S) condition, also the notion of Lusternik-
Schnirelman category plays a fundamental role in the study of ecritical
points of a functional. We use a modification of this notion: the
category over compact sets, defined by F. E. Browder [2]:

DEFINITION 2.1. Let X be a topological space. If K is a subset

of X, cat(K;X) is the least integer n such that KC|J K,, with K,
i=1
closed and contractible to a point over X. If no such integers exist, we
pose cat (K; X) = + oo.
We define caty(X) by caty(X) = sup{cat(K; X): K compact subset
of X}.

For some properties of category over compact sets, see e.g. [2], [1].
We state now a lemma and a theorem, which will be useful in the
following.

LEMMA 2.2. Let f be a functional of class C* defined on a Hilbert
space H. Let M be an opcn subset of H such that f is bounded from
below on M (closure of M) and satisfies condition (P-8) on M. Consider
the Cauchy problem

5) { w' = — grad f(w)

w(0) =p
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and denote by w(t, p) the solution of (5) and by (t~(p), t*(p)) the max-
imal interval on which w(t, p) is defined. Suppose that Vpe M and
Vte [0, tH(p)) w(t,p)e M. Under these conditions we have that:

i) Vpe M t+(p) = + oo;

i) Vpe M the limw(t, p) exists and s equal to p,, with
gra‘df(po) = 0.

Proor. The proof is standard.

THEOREM 2.3. Let M be an open subset of the Hilbert space H
and let f be a functional which satisfies the hypothesis of lemma 2.2.
Moreover we suppose that if p, = limw(t, p) with pe M, then p,e M.
Under these conditions, denoted by M, the set of critical points of f in M
we have that: card (M,)> cat, (M).

Proor. It is similar to the proof of theorem 1.3, in [2]. Such
arguments can be repeated since (i) and (ii) of lemma 2.2 are true
and since the critical points to which converge the gradient lines of f,
belong to M for hypothesis. Q.E.D.

3. We study now in particular our problem. First we observe
that, since C is a compact, positive self-adjoint operator, then the
problem

u = ACu ue WI(Q)
has countably infinite many eigenvalues A, such that 0 < 4, </, <....

We denote by v, the corresponding eigensolutions (normalized). It is
our main purpose to prove the following theorem:

THEOREM 3.1. Suppose that conditions (a)-(f) are satisfied. If
An <1, then boundary value problem (1) has at least m pairs of nonzero
solutions.

The proof of the theorem is based on two lemmas:

LEMMA 3.2. If conditions (a)-(f) are satisfied, then the set

M= {ueW‘(Q): f(u) < 0}

18 bounded,
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LemwmA 3.3. If the conditions of theorem 3.1 are satisfied, then
the set M of the previous lemma has the following properties:

i) M is symmetric respect to 0;

ii) denoted by M the identiﬁcatign space wunder the reflection
j:u——u, we have that cat, (M)>m.

Proor orF LEMMA 3.2. Suppose M is not bounded. Then there
exists a sequence w,e W1(£2) such that

(6) ] = + o0
(7 flu,) < 0.

From (7) we obtain:

[ta]|2< (CUny Wa)) — 2P () :fc(w) ul(x) doe — 2fdsfb(w, 81 () U, (2) dor =
Q o Q2

=fc(m) up(@) do — f ds f (@, su,(x)) un(x) do .
2] o Q2
We divide by |u.]? and set z,(x) = |u.| un(®). We have

(8) 1< |e(w) 2a(w) do — | ds | oc(@, su.(®)) 2a(®) dw =
i Jonfetes o)

zfds f zﬁ(w)(c(a&) — a(, su,,(a:))) de .
° £

Since |2,] =1, we may assume — passing to a subsequence — that
2a(x) — Z(x) almost everywhere in . We denote by £’ the set
{ze2: Z(x) % 0} and by Q" the set O\ Q'; let B.(x,s) be the func-
tion given by

Bal, $) = min {c(x), a(®, su.(r))}.

Since Vo e 2 and Vs € [0, 1] we have that 8.(z, s) <a(w, su,(w)), from (8)
we obtain

1<[ [(@)le@) —Bule, 9))dwds .
02
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We prove that the integral in this inequality converges to zero. In
fact if x€ Q' then by (6) we have that wu.(x) = |u,|2.(x) — - oo;
on the other hand by hypothesis for almost all ze 2 and for all
s€(0,1) we have that }Lng o(x, st)>ec(xr). Thus we conclude that, if

e Q' then c(x) — Ba(w, 8) - 0. If ze Q" we have that [e(2) — Ba(@, s)|<
<2¢(x) and 2,(x) — 0. Thus we obtain a contradiction and lemma 3.2
is proved. Q.E.D.

PrROOF OF LEMMA 3.3. (i) is an immediate consequence of the fact
that f is even. We prove (ii). From the hypothesis we made, with
easy computations we have that

(9) f@)vl[v]= |v|2—((Cv, v)) +b, (2, u(w)) v2(x) do (*).

Q

Since for hypothesis b,(x, 0) = 0, then from (9) we obtain
(10) F(O)wI[v] = [v]2—((Cv, v).

Let V,, be the linear manifold spanned by vy,...,v,. If veV,, v#0,
since A, <1, then we have that |v|*<((Cv,v)); thus from (10) we
obtain:

(11) {"(O)[vllv]l< 0  VweV,, v£0.

Since f(0) =0, (11) implies that there exists a neighborhood U of 0
in V, such that Vue U\{0} is f(u)<0. Thus there exists a sphere
K ={ueV,: |u| =¢} such that Kc M. On the other hand, by
lemma 3.2, there exists a ball X such that M c 2'= Z\{0}. We denote
by K and X the identification spaces of K and X’ respectively, under
reflection j. 2 is homotopically equivalent to an infinite dimensional
projective space; K is a m —1 dimensional projective space canoni-
cally imbedded in this projective space. Then it is known that
cat (K; 3y = m. Since KcIMcZX', thus we have: cat (K M)>
>cat(K; 3") = m. Since K is compact, this enables us to prove that
caty (M) >m. Q.E.D.
‘We can now prove theorem 3.1.

(*) f"(w)[v][v] denotes the value that the bilinear mapping f’(u) assumes
when it is evaluated on the point (v, v).
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ProOF oF THEOREM 3.1. We have shown in Sect. 2 that the solu-
tions of (1) are the critical points of the functional f(u) = }|u|2?—
— 3((Cu, w)) + h(u). We shall prove that f has on M 2m critical points
(M being the set defined in lemma 3.2). Since M is bounded, then f
is a functional of class C? bounded on M, satisfying condition (P-S) on

M (see Sect. 2). Let w(t, p) be the solution curve of Cauchy problem (5).
Since

% (w(t, p)) = (grad f(0(t, ), w'(t, p))) = — | grad f(w(t, p))|*

then the function f(w(t, p)) is a non-increasing function of ¢ (for every p).
Thus if pe M, we have that f(w(t, p))<f(p)<0 and so w(t,p)e M
Vte[0,t*(p)). Then by lemma 2.2 we can state that: (i) Vpe M
w(t, p) is defined for te[0, + oo); (ii) Vpe M the ‘liin w(t, p) exists

and is equal to p, with gradf(p,) =0. We observe also that this
limit p, belongs to M, since f(p,) =‘Ein f(w(t, p)) < 0.

Let M be the identification space of M under the reflection j.
Since f is even, it induces a function f on M, and obviously f has the
same properties of f. Then we can use theorem 2.3; hence, denoted
by M, the set of critical points of f on M, we have that card (J,)>
> cat, (#M). Since by lemma 3.3 we have that cat, (M)>m, then it
results: card (M,)>m. To complete the proof it suffices to observe
that if w is a critical point for f then - u are critical points for f. Q.E.D.

Suppose now that no parity conditions on tb(z, ¢) is assumed, while
all the other hypothesis are satisfied. Then lemma 3.2 still holds,
and lemma 3.3 shall state only that if 4, <1, then M = . Let pe M;
repeating the arguments used in the proof of theorem 3.1, we have
that w(?, p) is defined for {e[0, + oo) and w(¢, p) converges to a cri-
tical point p,. Since f(w(t, p)) is nonincreasing, then we have that
f(po) < 0 and thus p, 0. Namely:

THEOREM 3.4. Suppose conditions (a)-(b)-(c)-(e)-(f) are verified. If
A <1 then (1) has at least a proper solution.

The following example shows that if 4,>1, then problem (1) can
have only the trivial solution.
Example 3.5. In the interval [0, #] consider the problem

" __ Il_diy
y'+y—>by) =0, (y = dtz),
Y(0) =y(xn) =10,

(12)
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where b(y) is such that yb(y)>0. If (12) has a proper solution 7,
we have

f[y "(t) + () — 0 b(F(®) ] dt =

= f {— @ ®) + §0) — GO b(F®)} at = 0.

But, by Poincaré inequality, we have that

F44

[rpwa< f ORS

]

and so the preceding equality cannot hold.

The example before is a particular case of a general one. In fact
suppose b(x,t) satisfies the condition tb(z,t) >0 (t=0), and let % be
a non-trivial solution of (1); then:

(13) |7|*—((Cq, ) = — (B, w)<0.

On the other hand, if 4,>1, is also |u|*>((Cu, u)) for every ue Wi(f2),
wich is in contradiction with (13).

Added in proof. While the present work was in printing, we got to know
that D. C. Clark has obtained some abstract results closely related to ours.
(Cf. D. C. CLARK, A wvariant of the Lusternik-Schnirelman theory, Ind. Univ.
Math. J., 22 (1972)).

We wish to point out that the results obtained in a previous paper
(cf. A. AMBROSETTI, Esistenza di infinite soluzioni per problemi mon lineart
in assenza di parametro, Atti Ace. Naz. Lincei, 52 (5) (1972)) concerning the
equation (1) with — b(z, t) replaced by -+ b(x,t), were contained, with small
variants in the hypothesis, in Hempel’s Thesis (cf. J. A. HEMPEL, Superlinear
variational boundary value problems and nonuniqueness, Ph. D. Thesis, Uni-
versity of New England) which we did not know.
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