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On the Existence of Multiple Solutions
for a Class of Nonlinear Boundary Value Problems.

ANTONIO AMBROSETTI (*)

1. In a recent paper J. A. Hempel [3] has proved the existence
of multiple (proper) solutions for the following nonlinear, variational
boundary value problem

where Q c Rn is a bounded open set with boundary 8Q and ai,k(x),
c(x) and b(x, t) are functions which satisfy suitable hypothesis.

The main purpose of this paper is to prove that Hempel’s result
is true if (under the same assumptions on and c(x)) b(x, t) satisfies
only parity and asymptotic conditions. No monotony and positivity
hypothesis are required, and moreover the existence of the second
derivative is not supposed. The method used in the proof is com-

pletely different from Hempel’s one and appears natural enough:
we remark that the solutions of (1) are the free critical points of a
suitable functional f on the Hilbert space and we prove
that these critical points belong to an open subset of which
is bounded and homotopically nontrivial. The critical points of f

(*) Indirizzo dell’A.: Istituto Matematico « L. Tonelli » - Via Derna, 1 -

56100 Pisa.
Lavoro eseguito con contributo del C.N.R. nell’ambito del Gruppo Nazio-

nale per l’Analisi Funzionale e le sue Applicazioni.
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on this open set are studied by means of Lusternik-Schnirelman

theory ([2], [4], [5], [1]).

2. Let Q be a bounded open subset of Rn; we denote by 8Q its
boundary and by X = (Xl’ ..., Xn) a point in Q. Consider the boundary
value problem

and suppose that the functions c(x) and b(x, t) satisfy the fol-
lowing assumptions:

a) ai,k(x) = ak,i(x) are bounded measurable functions, such that
:Mi)/t~./l2&#x3E;~li&#x3E;0~ for which:

b) c(x) E .Le(SZ) with e &#x3E; n/2 ; c(x) ~ 0 on S~ and &#x3E; 0 on a set
of positive measure on S~ ;

c) for all t b(x, t) is measurable in x; for almost all b(x, t)
is of class C’ in t;

d) for almost all we have: b(x, - t) _ - b(x, t);

e) setting oc(0153, t) = t-lb(x, t), we have (for almost all x E Q):

Let the Hilbert space obtained as closure of the class D(Q)
of infinitely differentiable functions with compact support in ,52, under



197

the norm

for all we set

((...)) is a scalar product in and the norm is

equivalent to the usual norm. We denote by B the operator of 
in itself defined by:

and by C the (linear) operator

Then the generalized solutions of (1) are the elements u of WI(Q)
such that

First of all we observe that Bu = grad h(u) with

and therefore that the solutions of (3) are the critical points of the func
tional f : W 1 S2 ) -~. ll~, defined by

From the conditions on the functions c(x) and b(x, t) we may deduce
the following properties for the functional f and its gradient:
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f is of class ~2;

f is even;

- C is a compact, positive self-adjoint operator and B is compact;

f is weakly continuous and bounded on every bounded set of 

Moreover f satisfies on every bounded set of the following
condition (given by Palais-Smale):

CONDITION (P-S). If Un is a sequence such that f (un) is bounded
and grad f (un) ~ 0, then Un has a converging subsequence.

In fact, if un is a bounded sequence such that ~ 0,
since B and C are compact, there exists a subsequence (which we
shall still denote by un) such that OUn - Bun is converging. Then

un = grad f (un) + OUn - Bun is converging too.
Together with (P-S) condition, also the notion of Lusternik-

Schnirelman category plays a fundamental role in the study of critical
points of a functional. we use a modification of this notion: the

category over compact sets, defined by F. E. Browder [2]:

DEFINITION 2.1. Let X be a topological space. If K is a subset
n

of X, cat (K; X ) is the least integer n such that U Xi, with ..Ki
i~l

closed and contractible to a point over X. I f no such integers exist, we
pose cat (.K; X) _ + ~ .

We define cat, (X) by cat, (X) = sup {cat (K; X): K compact subset
of xl.

For some properties of category over compact sets, see e.g. [2], [1].
We state now a lemma and a theorem, which will be useful in the

following.

LEMMA 2.2. Let f be a functionals of class C2 defined on a Hilbert
space H. Let .11I be an open subset of H such that f is bounded f rom
below on M (closure of M) and satisfies condition (P-S) on M. Consider
the Cauchy problem



199

and denote by w(t, p) the solution o f (5) and by (t-(p), t+(p)) the max-
imal interval on which w(t, p) is defined. Suppose that b’p E lVl and
b’t E [0, t+(p)) w(t, p) E M. Under these conditions we have that:

ii) lim w(t, p) exists and is equal to Po 7 with

grad f (po) = 0.

PROOF. The proof is standard.

THEOREM 2.3. Let M be an open subset of the Hilbert space H
and let f be a functional which satisfies the hypothesis of 2.2.
Moreover we suppose that if po = lim w(t, p) with p E .1V1, then po E M.
Under these conditions, denoted by Mo the set of critical points of f in M
we have that : card (lllo) &#x3E; catk (M).

PROOF. It is similar to the proof of theorem 1.3, in [2]. Such

arguments can be repeated since (i) and (ii) of lemma 2.2 are true
and since the critical points to which converge the gradient lines of f ,
belong to M for hypothesis. Q.E.D.

3. We study now in particular our problem. First we observe

that, since C is a compact, positive self-adjoint operator, then the
problem

has countably infinite many eigenvalues Ân such that 0  ~2 c ....
We denote by vn the corresponding eigensolutions (normalized). It is

our main purpose to prove the following theorem:

THEOREM 3.1. Suppose that conditions (a)-(f) are satisfied. If
1, then boundary value problem (1 ) has at least m pairs of nonzero

solutions.

The proof of the theorem is based on two lernmas :

LEMMA 3.2. If conditions (a)-( f ) are satisfied, then the set

is bounded.



200

LEMMA 3.3. If the conditions of theorem 3.1 are satisfied., then

the set M of the previous lemma has the following properties :

i) M is symmetric respect to 0 ;

ii) denoted by M the identification space under the reflection
~ : u -~ - u, we have that catk (M) ~ m.

PROOF OF LEMMA 3.2. Suppose M is not bounded. Then there
exists a sequence such that

From (7) we obtain:

We divide by and set We have

Since Ilznll ~~ =1, we may assume - passing to a subsequence - that
zn(x) ~ almost everywhere in SZ. We denote the set

{~~.8:~)~=0} and by Q" the set let s) be the func-
tion given by

Since and Vs E [0, 1 ] we have that ~n (x, s ) ~ a(x, from (8)
we obtain
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We prove that the integral in this inequality converges to zero. In

fact if then by (6) we have that ~cn(x) = ~ ::l: 00;
on the other hand by hypothesis for almost all and for all

s E (0, 1) we have that lim oc(x, Thus we conclude that, if
i-m

x E SZ’ then c(x) - s) ~ 0. If x E S~" we have that - s) ~ c
and zn(x) --~ 0. Thus we obtain a contradiction and lemma 3.2

is proved. Q.E.D.

PROOF OF LEMMA 3.3. (i) is an immediate consequence of the fact
that f is even. We prove (ii). From the hypothesis we made, with
easy computations we have that

Since for hypothesis 0) = 0, then from (9) we obtain

Let Ym be the linear manifold spanned by vi , ... , vm. If 0, 7
since 2.  1, then we have that ((CV7 v)); thus from (10) we
obtain:

Since 1(0) = 0, (11) implies that there exists a neighborhoo d U of 0
in V m such that ’Bfu E Ug(0) is f (u)  0. Thus there exists a sphere

such that K c M. On the other hand, by
lemma 3.2, there exists a ball Z such that We denote

by.K and 2’ the identification spaces of .K and Z’ respectively, under
reflection j. Z’ is homotopically equivalent to an infinite dimensional
projective space; k is a m -1 dimensional projective space canoni-
cally imbedded in this projective space. Then it is known that

Since thus we have: &#x3E;

1") = m. Since K is compact, this enables us to prove that
Q.E.D.

We can now prove theorem 3.1.

(*) denotes the value that the bilinear mapping f"(u) assumes
when it is evaluated on the point (v, v).
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PROOF OF THEOREM 3.1. We have shown in Sect. 2 that the solu-
tions of (1) are the critical points of the functional 
- 2 Cu, u)) + h(u). We shall prove that f has on .1 2m critical points
(.1~ being the set defined in lemma 3.2). Since l~l is bounded, then f
is a functional of class C2 bounded on At, satisfying condition (P-S) on
lVl(see Sect. 2). Let w(t, p) be the solution curve of Cauchy problem (5).
Since

then the function f(w(t, p)) is a non-increasing function of t (for every p).
Thus if p E M, we have that f (w(t, p)~ c f (p)  0 and so 
b’t E [o, t+( p ) ) . Then by lemma 2.2 we can state that: (i) 
w(t, p) is defined for t E [0, + oo); (ii) Vp E M the lim w(t, p) exists

i-+m

and is equal to po with grad f (po) = 0. We observe also that this
limit po belongs to M, since f (po) = lim f(w(t, p))  0.

_ 

’

Let M be the identification space of . under the reflection j.
Since f is even, it induces a function i on M, and obviously 1 has the
same properties of f . Then we can use theorem 2.3; hence, denoted
by Mo the set of critical points of I on M, we have that card (Mo) &#x3E;
&#x3E; catk(M). Since by lemma 3.3 we have that catk(M»m, then it
results: card (Mo) ~ m. To complete the proof it suffices to observe
that if u is a critical point for f then + u are critical points for f . Q.E.D.

Suppose now that no parity conditions on tb(x, t) is assumed, while
all the other hypothesis are satisfied. Then lemma 3.2 still holds,
and lemma 3.3 shall state only that if 1, then 0. Let p E M;
repeating the arguments used in the proof of theorem 3.1, we have
that w ( t, p ) is defined for tE[O, + oo ) and w ( t, p ) converges to a cri-
tical point po . Since f (w(t, p) ) is nonincreasing, then we have that
f (po ) C 0 and thus p~ ~ 0 . Namely:

THEOREM 3.4. Suppose conditions (a)-(b)-(c)-(e)-( f ) are verified. If
1 then (1) has at least a proper solution.

The following example shows that if ~,~ ~ 1, then problem (1) can
have only the trivial solution.

Example 3.5. In the interval [0, n] consider the problem
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where b(y) is such that yb ( y ) &#x3E; 0 . If (12) has a proper solution y,
we have

But, by Poinear6 inequality, y we have that

and so the preceding equality cannot hold.
The example before is a particular case of a general one. In fact

suppose satisfies the condition tb (x, t ) &#x3E; 0 (t ~ 0 ), and let 11 be
a non-trivial solution of (1); then:

On the other hand, if is also u)) for every 
wich is in contradiction with (13).

Added in proof. While the present work was in printing, we got to know
that D. C. Clark has obtained some abstract results closely related to ours.
(Cf. D. C. CLARK, A variant of the Lusternik-Schnirelman theory, Ind. Univ.
Math. J., 22 (1972)).

We wish to point out that the results obtained in a previous paper
(cf. A. AMBROSETTI, Esistenza di infinite soluzioni per problemi non lineari
in assenza di parametro, Atti Acc. Naz. Lincei, 52 ( 5 ) (1972)) concerning the
equation (1) with - b(x, t) replaced by + b(x, t), were contained, with small
variants in the hypothesis, in Hempel’s Thesis (cf. J. A. HEMPEL, Superlinear
variational boundary value problems and nonuniqueness, Ph. D. Thesis, Uni-
versity of New England) which we did not know.
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