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SULLA NOZIONE DI ¢-CONVESSITA
PER GLI SPAZI COMPLESSI NON RIDOTTI

VINIOIO VILLANI*)

1. Introduzione.

Sia X uno spazio complesso (ridotto). Dato un intero positivo
g, si dice che X & ( fortemente) g-convesso se esiste su X una funzione
@ a valori reali, differenziabile di classe G, tale che:
(I) per ogni c€R, Dinsieme B, = {p€ X; ¢ (p) < ¢} & relati-
vamente compatto in X ;
(II) esiste un compatto K < X, tale che nei punti p¢ X — K
la funzione ¢ & fortemente q-plurisubarmonica (per la definizione di
funzione fortemente ¢-plurisubarmonica, cfr. ad es. [4], § 4).
Se poi nella definizione precedente e possibile prendere K= ¢,
lo spazio X si dice g-completo ).
Andreotti e Grauert hanno provato in [1] che:
Se X é q-convesso, sussiste la sequente proprieta :
(Ag) Dato wun arbitrario fascio coerente F su X, si ha
dimg HI (X, F) < + oo, per ogni intero j = q.

*) Lavoro eseguito nell’ambito dell’attivitd dei gruppi di ricerea matematica
del Consiglio Nazionale delle Ricerche per ’anno 1967-68.

Indirizzo dell’A.: Istituto di Matematica, Via Alberti, 4 16132 Genova.

1) Per omogeneitd ocon la terminologia usata nei lavori citati nella biblio-
grafia, si ® mantenuta qui la definizione di spazio g-convesso e di spazio g-com-
pleto, quale era stata introdotta originariamente in [1]. Nei lavori pid recenti,
gli stessi spazi sono detti abitualmente (¢ — 1)-convessi e (¢ — 1)-completi.
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Se X é q-completo, sussiste la seguente proprieta .

(Bg) Dato wun arbitrario fascio coerente F su X, si ha
Hi(X, F)=0, per ogni intero j = gq.

Sia ora (X, 9) uno spazio complesso generale (non necessaria-
mente ridotto); sia (X, O) il corrispondente spazio complesso ridotto
(cfr. ad es. [2]). Per definizione si dira che (X, %) & q-convesso, rispet-
tivamente g¢-completo, se (X, O) & ¢-convesso, rispettivamente ¢-com-
pleto, nel senso detto sopra.

Scopo di questo lavoro & dimostrare che i teoremi di Andreotti
e Grauert sussistono pitt in generale anche per gli spazi complessi
non ridotti. Precisamente :

TEOREMA. Sia (X, ) uno spazio complesso generale. Se (X, H)
é g-convesso, per (X, H) sussiste la proprieta (A,). Se (X, %) ¢
g-completo, per (X, i) sussiste la proprieta (B,).

Osservazione : Naturalmente i fasci & che intervengono nelle
proprietd (A,) e (B;) si intendono coerenti rispetto al fascio strut-
turale 9, e non necessariamente rispetto al fascio strutturale O
della corrispondente struttura ridotta di X.

2. Dimostrazione del teorema.

La dimostrazione per il caso q-completo & un’estensione banale
del teorema 3 di [2], § 2; del resto la tesi relativa al caso ¢-com-
pleto seguira come caso particolare della dimostrazione che andiamo
a dare per il caso ¢-convesso. Ricordiamo preliminarmente che se
X & uno spazio (ridotto) ¢g-convesso, si ha :

LEMMA 1 (cfr. [1], Teorema 14). Esiste un aperto B, relativa-
mente compatto in X, tale che 'omomorfismo naturale

Hi(X,F)— HI(B,, F)

¢ bigettivo per ogni fascio coerente F su X, e per ogni j = q.
Tenuto conto di questo lemma, possiamo provare il teorema
per il caso g-convesso, estendendo opportunamente la dimostrazione
del giad citato teorema 3 di [2], § 2. Seguendo le notazioni di [2],
indicheremo con red: 99— O lapplicazione naturale del fascio
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strutturale di (X, 9¢) sul fascio strutturale del corrispondente spazio
ridotto. Sia W il fascio nucleo dell’applicazione red: ¥ — O;
quindi 9® & un sottofascio di ideali di . Siano poi K™ (v = 1,2,...)
i sottofasci di ideali di <, generati dagli elementi della forma
Dyreerdy, cOn By, D € XD, Si ha:

— ( 2)
W — AV D YD D YD D ...

Sussiste il

TEOREMA (cfr. [2], § 1, Teorema 4). In corrispondenza ad ogni
sottoinsieme relativamente compatto B di X esiste un (minimo) tniero
k, tale che H* | B = 0.

Sia ora ¥ un fascio 9f-coerente arbitrario su X; poniamo
FO) = F.HY®; risulta quindi F© = % Si hanno le successioni
esatte (per v =20,1, 2,...):

(1,) 0 — FotD 5 FO) 5 FOYFE+H) 5 0,

I fasei F/F0+1) gi possono interpretare come fasci analitici rela-
tivamente alla struttura ridotta (X, O) e inoltre dal fatto che % era
%-coerente segue che i fasci F*/F0+D gono O-coerenti.

Si considerino le successioni esatte di coomologia, associate
alla successione esatta (1,), nelle dimensioni j =gq:

@) HIX, G 1 (X, F0) D 7 (X, Foyge),

Dai risultati di [1], valevoli per la struttura ridotta (X, O), risulta
che gli HI (X, F®/F0+D) sono spazi vettoriali di dimensione finita
su C. Esiste quindi un numero finito di elementi ag"),...,ag:)e
€HI (X, F), le cui immagini nell’applicazione f, generano tutto
By (Hi (X, F®)), e pertanto ogni elemento &,€ HJ (X, F®) si potra
scrivere nella forma

(3,) E =300 o + ¢

», 0

con ¢ €C, e con £, €Ker f =Ima,.
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Sia B, Paperto relativamente compatto di cui al lemma 1, e sia k&
il minimo intero tale che F® |B,=0. Si considerino i seguenti
elementi di HJ (X, F)):

0 0
oy ey 00,

(1) (1)
%, 0y ey g 0

(2) (2)
(4) oy 0, Oy ey 0 0, 03

(k—1) . (k—1)

oy, e Oy O y Oy O e O o O

01" Tk—2 "1 ’

Proveremo ora che questi elementi generano H/ (X, ) come spazio
vettoriale su C, onde H/ (X, F) ha dimensione finita su C, il che @
precisamente la tesi del teorema per il caso ¢-convesso. Sia dunque
&, € Hi (X, F) un elemento arbitrario. A norma della (3;,) si pud

SCIiVeIe
E p— Z cO 00 ’t
0 (l) s) 0.0’

con & o=ayé&, ove £ & un opportuno elemento di HJ (X, FM)
Iterando il procedimento, si vede che si puo scrivere

b= Sl o) b,

con &, o=a, &, ove &, & un opportuno elemento di HJ (X, F?),...,
e finalmente :
Ek-—1 ) c&k—l) olk—1) _|_ £

k—1,0"
con

Ek—1, 0= k-1 &, ove &€ HI(X, F®),

Consideriamo le immagini di queste uguaglianze in H/ (X, F)
(mediante successiva applicazione degli omomorfismi «,) e sommiamo
membro a membro. Si ottiene :

&, = {combinazione lineare a coefficienti complessi
degli elementi di (4)} + ag o; ... otx—; &k,

ove & € Hi (X, F®), Si tratta di far vedere che aj o, ... 0x— & & la
classe nulla di HJ(X,F); a tal fine basta far vedere che & & lo
zero di HJI (X, F®); proveremo in realtd che si ha HI (X, F®) = 0.
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Infatti per » =k la successione (2,) diviene semplicemente

5) Hi (X, Fotd) D5 Hi (X, F¥)—> 0,

in quanto per costruzione F®/F*+1) & un fascio O-coerente che &
nullo su B, (per come & stato scelto k) e quindi (per il lemma 1):

Hi (X, {-7(")/?(74-1)) ~ Hi (BO , 7(7)/{7(1’+1)) = HJ (Bo ,0)=0.

A questo punto, per provare che HJ (X, F®) =0, si pud ripetere
il ragionamento di Grauert [2], loc. cit., sfruttando le (5). A grandi
linee, il ragionamento di Grauert & il seguente: si ricopre X me-
diante una successione crescente di aperti relativamente compatti
B, (EB, (€ B,(=...; dato un elemento arbitrario & € HJ (X, F®),
tale & & rappresentabile su un opportuno ricoprimento Y di X
mediante un cociclo, elemento di Z7 (U, F®); servendosi della sur-
gettivitd delle (5) si vede che, su un opportuno raffinamento Y,
di U tale cociclo &, a meno di un cobordo dz,, 'immagine di un
cociclo, elemento di Z7 (Y, , F*¥+V);.... Si ottiene cosl una succes-
sione di ricoprimenti Y,, V,, YV, .., ognuno raffinamento del
precedente, e una successione di cobordi dw,, 7, , dng,.... I rico-
primenti <Y, , V,, V;,... si possono scegliere in modo tale che
esista un ricoprimento <)), raffinamento comune di tutti i ricopri-
menti <V;; le (j — 1)-cocatene #,, 5, , 73, ... 8i possono interpretare
come elementi di O/~ (Y, F®), Ora in corrispondenza a ciascun
B; esiste un intero k;, tale che per » =k; si ha F®|B;= 0 (con-
seguenza del citato teorema 4 di [2], § 1) e quindi #,| B;= 0 per
» > k;. Pertanto & ben definita la (j — 1)-cocatena somma % =

= 3 g€ 01 (Y, F®), e la classe & & rappresentata, sul ricopri-
1

mento Y, da dz, ciod si tratta della classe nulla. Cid prova preci-
samente che HJ (X, F®)= 0. Abbiamo cosl provato il teorema, re-
lativamente al caso g-convesso. Il caso g-completo si deduce subito
da quanto precede, osservando che in quest’ultimo caso le (5) sus-
sistono per ogni k, e quindi risulta, prendendo ¥ = 0:

HI (X, F)=HI(X, F9) =0 per ogni j = q.
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