@article{RSA_2003__51_4_5_0,
author = {Chavent, M. and De Carvalho, F. de A. T. and Lechevallier, Y. and Verde, R.},
title = {Trois nouvelles m\'ethodes de classification automatique de donn\'ees symboliques de type intervalle},
journal = {Revue de Statistique Appliqu\'ee},
pages = {5--29},
year = {2003},
publisher = {Soci\'et\'e fran\c{c}aise de statistique},
volume = {51},
number = {4},
language = {fr},
url = {https://www.numdam.org/item/RSA_2003__51_4_5_0/}
}
TY - JOUR AU - Chavent, M. AU - De Carvalho, F. de A. T. AU - Lechevallier, Y. AU - Verde, R. TI - Trois nouvelles méthodes de classification automatique de données symboliques de type intervalle JO - Revue de Statistique Appliquée PY - 2003 SP - 5 EP - 29 VL - 51 IS - 4 PB - Société française de statistique UR - https://www.numdam.org/item/RSA_2003__51_4_5_0/ LA - fr ID - RSA_2003__51_4_5_0 ER -
%0 Journal Article %A Chavent, M. %A De Carvalho, F. de A. T. %A Lechevallier, Y. %A Verde, R. %T Trois nouvelles méthodes de classification automatique de données symboliques de type intervalle %J Revue de Statistique Appliquée %D 2003 %P 5-29 %V 51 %N 4 %I Société française de statistique %U https://www.numdam.org/item/RSA_2003__51_4_5_0/ %G fr %F RSA_2003__51_4_5_0
Chavent, M.; De Carvalho, F. de A. T.; Lechevallier, Y.; Verde, R. Trois nouvelles méthodes de classification automatique de données symboliques de type intervalle. Revue de Statistique Appliquée, Tome 51 (2003) no. 4, pp. 5-29. https://www.numdam.org/item/RSA_2003__51_4_5_0/
[AUB94] (1994), Initiation à l'analyse appliquée, Masson. | Zbl | MR
[BRE 84] , , , (1984), Classification and regression trees, Chapman Hall. | MR
[BOC 00] BOCK H. H., DIDAY E. (eds.) (2000), Analysis of Symbolic Data, Exploratory methods for extracting statistical information from complex data. Studies in Classification, Data Analysis and Knowledge Organisation, Springer-Verlag. | Zbl | MR
[CEL 89] , , , (1989), Classification Automatique des Données. Bordas, Paris.
[CHA 97] (1997), Analyse des Données Symboliques. Une méthode divisive de classification. Thèse de l'Université de PARIS-IX Dauphine.
[DCA 94] (1994), Proximity coefficients between Boolean symbolic objects, in New Approaches in Classification and Data Analysis, Diday et al. (Eds.), Springer Verlag, Heidelberg, 387-394. | MR
[DCA 98] (1998), Extension based proximities between Boolean symbolic objects, in Data Science, Classification and Related Methods, Hayashi, C. et al. (eds.), Springer-Verlag, Tokyo, 370-378. | Zbl
[DCS 98] , (1998), Statistical proximity functions of Boolean symbolic objects based on histograms. In : Rizzi, A., Vichi, M., Bock, H.-H. (Eds.) : Advances in Data Science and Classification, Springer-Verlag, Heidelberg, 391- 396 | Zbl | MR
[DCA 00] , , (2000), Symbolic approach to classify large data sets, in : Data Analysis, Classification, and Related Methods, Kiers, H.A.L. et al. (Eds.), Springer, 375-380. | Zbl
[DVL 99] , et (1999), A dynamical clustering of symbolic objects based on a context dependent proximity measure. In : Bacelar-Nicolau, H., Nicolau, F.C. and Janssen, J. (Eds.) : Proc. IX International Symposium - ASMDA'99. LEAD, Univ. de Lisboa, 237-242.
[DID 71] (1971), Le méthode des Nuées dynamiques, in Revue de Statistique Appliquée, 19, 2, 19-34. | Numdam
[DID 88] (1988), The symbolic approach in clustering and related methods of data analysis : The basic choice. In Proc. IFCS-97, Bock, H.-H. (Eds), Springer-Verlag, Heidelberg, 673-684.
[DID 98] (1998), Symbolic Data Analysis : a Mathematical Framework and Tool for Data Mining, in New Andvances in Data Science and Classification, Rizzi, A. et al. (eds.), Springer -Verlag, Heidelberg, 409-416. | Zbl
[DIS 76] AND (1976), Clustering Analysis. In : Fu, K. S. (Eds.) : Digital Pattern Recognition. Springer-Verlag, Heidelberg, 47-94. | Zbl
[DID 80] , , et (1980), Clustering in pattern recognition, NATO Advanced study Institute on Digital Image Processing and Analysis, Bonas. Available at INRIA-Rocquencourt. | Zbl
[ICY 94] , (1994), Generalized Minkowsky Metrics for Mixed Feature Type Data Analysis. IEEE Transactions System, Man and Cybernetics 24, 698-708. | MR
[IYD 96] , , (1996), A fuzzy symbolic pattern classifier, in : Ordinal and Symbolic Data Analysis, Diday, E. et al. (Eds.), Springer, 92-102. | Zbl
[LEC 97] (1997), Classification non supervisée, in Statistique et méthodes neuronales, Thiria, Lechevallier et al. (Eds.), Dunod, Chap. 10,171- 189.
[LER 79] (1979), La méthode des pôles d'attraction - La méthode des pôles d'agrégation. Thèse de Diplôme de docteur de 3e cycle. Université Paris VI, 106-116.
[MIC 80] (1980), Knowledge acquisition through conceptual clustering : A theoretical framework and an algorithm for partitioning data into conjunctive concepts. A special Issue on Knowledge Acquisition and Induction. Policy Analysis and Information Systems, 3. | MR
[MDS 81] , , (1981), A recent advance in data analysis : Clustering Objects into classes characterized by conjunctive concepts. In : Kanal L. N. and Rosenfeld A. (Eds.) : Progress in pattern recognition. North-Holland, 33-56.
[VDL 00] , , (2000), A Dynamical Clustering Algorithm for Multi-Nominal Data. In : H.A.L. Kiers, J.-P. Rasson, P.J.F. Groenen and M. Schader (Eds.) : Data Analysis, Classification, and Related Methods, Springer-Verlag, Heidelberg, 387-394. | Zbl | MR
[VDL 01] , DE , (2001), A dynamical clustering algorithm for symbolic data. Tutorial Symbolic Data Analysis, GfK1 Conference, Munich.






