@article{RSA_1999__47_3_81_0,
author = {Morgan, Robert C. and Nason, G. P.},
title = {Wavelet shrinkage of itch response data},
journal = {Revue de Statistique Appliqu\'ee},
pages = {81--98},
year = {1999},
publisher = {Soci\'et\'e fran\c{c}aise de statistique},
volume = {47},
number = {3},
language = {en},
url = {https://www.numdam.org/item/RSA_1999__47_3_81_0/}
}
TY - JOUR AU - Morgan, Robert C. AU - Nason, G. P. TI - Wavelet shrinkage of itch response data JO - Revue de Statistique Appliquée PY - 1999 SP - 81 EP - 98 VL - 47 IS - 3 PB - Société française de statistique UR - https://www.numdam.org/item/RSA_1999__47_3_81_0/ LA - en ID - RSA_1999__47_3_81_0 ER -
Morgan, Robert C.; Nason, G. P. Wavelet shrinkage of itch response data. Revue de Statistique Appliquée, Tome 47 (1999) no. 3, pp. 81-98. https://www.numdam.org/item/RSA_1999__47_3_81_0/
[1] , (1997). Wavelets: introduction to wavelets and wavelet transforms. Prentice Hall, Englewood Cliffs, NJ.
[2] , (1995). Translation-invariant de-noising. In A. Antoniadis and G. Oppenheim, editors, Wavelets and Statistics: Proceedings of the XVth Rencontres Franco-Belges des Statisticiens., volume 103 of Lecture Notes in Statistics. Springer-Verlag. | Zbl | MR
[3] (1992). Ten Lectures on Wavelets. SIAM, Philadelphia. | Zbl | MR
[4] , (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika, 81(3): 425-55. | Zbl | MR
[5] , (1995). Adapting to unknown smoothness via wavelet shrinkage. J. Am. Statist. Ass., 90: 1200- 1224. | Zbl | MR
[6] , , , (1995). Wavelet shrinkage: asymptopia? (with discussion. J. R. Statist. Soc. B, 57: 301-337. | Zbl | MR
[7] (1967). Iontophoresis. In S. Licht, editor, Therapeutic Electricity and Ultraviolet Radiation, pages 156- 178. Elizabeth Licht, New Haven.
[8] , (1997). Wavelet threshold estimators for data with correlated noise. J. R. Statist. Soc. B, 59: 319-351. | Zbl | MR
[9] (1998). Wavelet shrinkage estimation of certain Poisson intensity signals using corrected thresholds. (submitted for publication). | Zbl | MR
[10] (1998). Wavelet thresholding for unequally spaced data. PhD thesis, Department of Mathematics, University of Bristol, Bristol, UK.
[11] (1989). A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and MAchine Intelligence, 11(7): 674- 693. | Zbl
[12] (1992). Wavelets and Operators. Cambridge University Press, Cambridge. | Zbl | MR
[13] , (1994). The discrete wavelet transform in s. Journal of Computational and Graphical Statistics, 3: 163-91.
[14] (1998). Image denoising: pointwise adaptive approach. Technical report, Weierstrass Institute for Applied Analysis and Stochastics.





