A linear programming technique to solve fuzzy multiple criteria decision making problems with an application
RAIRO. Operations Research, Tome 55 (2021) no. 1, pp. 83-97

Generally, in real world multiple criteria decision making (MCDM) problems, we concern with inaccurate data. This paper transforms a fuzzy multiple criteria decision making (FMCDM) problem into two linear programming models based on simple additive weighting method (SAW). The new linear models calculate two scores for each alternative in optimistic and pessimistic viewpoints. To rank the alternatives, the numerical value of the arithmetic mean of good score and bad score is used as final score of each alternative. Finally, we illustrate the practical applications of the proposed method in selection an industrial zone for construct dairy products factory.

DOI : 10.1051/ro/2020116
Classification : 90C05, 90C70
Keywords: Fuzzy multiple criteria decision making (FMCDM), simple additive weighted (SAW), fuzzy TOPSIS (FTOPSIS), linear programming (LP)
@article{RO_2021__55_1_83_0,
     author = {Sadabadi, Seyed Ali and Hadi-Vencheh, Abdollah and Jamshidi, Ali and Jalali, Mohammad},
     title = {A linear programming technique to solve fuzzy multiple criteria decision making problems with an application},
     journal = {RAIRO. Operations Research},
     pages = {83--97},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {1},
     doi = {10.1051/ro/2020116},
     mrnumber = {4223878},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2020116/}
}
TY  - JOUR
AU  - Sadabadi, Seyed Ali
AU  - Hadi-Vencheh, Abdollah
AU  - Jamshidi, Ali
AU  - Jalali, Mohammad
TI  - A linear programming technique to solve fuzzy multiple criteria decision making problems with an application
JO  - RAIRO. Operations Research
PY  - 2021
SP  - 83
EP  - 97
VL  - 55
IS  - 1
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2020116/
DO  - 10.1051/ro/2020116
LA  - en
ID  - RO_2021__55_1_83_0
ER  - 
%0 Journal Article
%A Sadabadi, Seyed Ali
%A Hadi-Vencheh, Abdollah
%A Jamshidi, Ali
%A Jalali, Mohammad
%T A linear programming technique to solve fuzzy multiple criteria decision making problems with an application
%J RAIRO. Operations Research
%D 2021
%P 83-97
%V 55
%N 1
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2020116/
%R 10.1051/ro/2020116
%G en
%F RO_2021__55_1_83_0
Sadabadi, Seyed Ali; Hadi-Vencheh, Abdollah; Jamshidi, Ali; Jalali, Mohammad. A linear programming technique to solve fuzzy multiple criteria decision making problems with an application. RAIRO. Operations Research, Tome 55 (2021) no. 1, pp. 83-97. doi: 10.1051/ro/2020116

M. Akbari, S. Molla-Alizadeh-Zavardehi, S. Niroomand and Meta-heuristic approaches for fixed-charge solid transportation problem in two-stage supply chain network. Oper. Res. 20 (2020) 447–471.

F. J. Arroyo-Canada and J. Gil-Lafuente, A fuzzy asymmetric TOPSIS model for optimizing investment in online advertising campaigns. OR (2017) 1–16.

M. Arslan and M. Çunkaş, Performance evaluation of sugar plants by fuzzy technique for order performance by similarity to ideal solution (TOPSIS). Cyber. Syst. 43 (2012) 529–548. | DOI

I. Beg and T. Rashid, Modelling uncertainties in multi-criteria decision making using distance measure and TOPSIS for hesitant fuzzy sets. Arti. Intel Soft Comp. Res. 7 (2017) 103–109.

D. Y. Chang, Applications of the extent analysis method on fuzzy AHP. Eur. J. Oper. Res. 95 (1996) 649–655. | Zbl | DOI

C. T. Chen, Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets Syst. 114 (2000) 1–9. | Zbl | DOI

S. J. Chen and C. L. Hwang, Fuzzy Multiple Attribute Decision Making. Vol. 375 of Lecture Notes in Economics and Mathematical Systems. Springer, Berlin-Heidelberg (1992). | MR | Zbl

T. Y. Chou, C. L. Hsu and M. C. Chen, A fuzzy multi-criteria decision model for international tourist hotels location selection. Int. J. Hosp. Manag. 27 (2008) 293–301. | DOI

D. Dalalah, M. Hayajneh and F. Batieha, A fuzzy multi-criteria decision making model for supplier selection. Expert Syst. Appl. 38 (2011) 8384–8391. | DOI

D. Dubois and H. Prade, Fuzzy Sets and Systems: Theory and Application. Academic Press, New York, NY (1980). | MR | Zbl

G. Dwivedi, R. K. Srivastava and S. K. Srivastava, A generalised fuzzy TOPSIS with improved closeness coefficient. Expert Syst. Appl. 96 (2018) 185–195. | DOI

L. Fang and H. Li, Multi-criteria decision analysis for efficient location-allocation problem combining DEA and goal programming. RAIRO:OR 49 (2015) 753–772. | MR | DOI

A. Hadi-Vencheh and M. N. Mokhtarian, A new fuzzy MCDM approach based on centroid of fuzzy numbers. Expert Syst. Appl. 38 (2011) 5226–5230. | DOI

S. H. R. Hajiagha, H. A. Mahdiraji, S. S. Hashemi and E. K. Zavadskas, Evolving a linear programming technique for MAGDM problems with interval valued intuitionistic fuzzy information. Expert Syst. Appl. 42 (2015) 9318–9325. | DOI

H. Han and S. Trimi, A fuzzy TOPSIS method for performance evaluation of reverse logistics in social commerce platforms. Expert Syst. Appl. 103 (2018) 133–145. | DOI

A. Hatami-Marbini and F. Kangi, An extension of fuzzy TOPSIS for a group decision making with an application to Tehran stock exchange. Appl. Soft Comp. 52 (2017) 1084–1097. | DOI

C. L. Hwang and K. Yoon, Multiple Attribute Decision Making Methods and Applications A State-of-the-Art Survey. Vol. 186 of Lecture Notes in Economics and Mathematical Systems. Springer, Berlin-Heidelberg (1981). | MR | Zbl

G. R. Jahanshahloo, F. Hosseinzadeh Lotfi andM. Izadikhah, Extension of the TOPSIS method for decision-making problems with fuzzy data. Appl. Math. Comp. 181 (2006) 1544–1551. | Zbl | DOI

D. Joshi and S. Kumar, Improved accuracy function for interval-valued intuitionistic fuzzy sets and its application to multi-attributes group decision making. Cyber. Syst. 49 (2018) 64–76. | DOI

M. Kabak, E. Köse, O. Krlmaz and S. Burmaoğlu, A fuzzy multi-criteria decision making approach to assess building energy performance. Ener. Build. 72 (2014) 382–389. | DOI

A. Kauffman and M. M. Gupta, Introduction to Fuzzy Arithmetic: Theory and Application. Van Nostrand Reinhold, New York, NY (1991). | MR | Zbl

H. A. Khalifa and Utilizing a new approach for solving fully fuzzy linear programming problems. C OR Rev. 10 (2019) 337–344. | MR

A. Kumar, J. Kaur and P. Singh, A new method for solving fully fuzzy linear programming problems. Appl. Math. Model. 35 (2011) 817–823. | MR | Zbl | DOI

T. S. Liou and M. J. J. Wang, Ranking fuzzy numbers with integral value. Fuzzy Sets Syst. 50 (1992) 247–255. | MR | Zbl | DOI

S. Ljubojević, D. Pamučar, D. Jovanović and V. Vešović, Outsourcing transport service: a fuzzy multi-criteria methodology for provider selection based on comparison of the real and ideal parameters of providers. Oper. Res. 1–35 (2017).

J. C. López, P. A. Á. Carrillo, D. A. G. Chavira and J. J. S. Noriega, A web-based group decision support system for multicriteria ranking problems. Oper. Res. 17 (2017) 499–534.

M. N. Mokhtarian and A. Hadi-Vencheh, A new fuzzy TOPSIS method based on left and right scores: an application for determining an industrial zone for dairy products factory. Appl. Soft Comp. 12 (2012) 2496–2505. | DOI

M. Naili, A. Boubetra, A. Tari, Y. Bouguezza and A. Achroufene, Brain-inspired method for solving fuzzy multi-criteria decision making problems (BIFMCDM). Expert Syst. Appl. 42 (2015) 2173–2183. | DOI

H. S. Najafi and S. A. Edalatpanah, A note on “A new method for solving fully fuzzy linear programming problems”. Appl. Math. Model. 37 (2013) 7865–7867. | MR | DOI

S. Niroomand, A. Mahmoodirad, A. Heydari, F. Kardani and A. Hadi-Vencheh, An extension principle based solution approach for shortest path problem with fuzzy arc lengths. Oper. Res. 17 (2017) 395–411.

S. Niroomand, N. Mirzaei and A. Hadi-Vencheh, A simple mathematical programming model for countries’ credit ranking problem. Int. J. Finance Econ. 24 (2019) 449–460. | DOI

E. Y. Peraei, H. R. Maleki and M. Mashinchi, A method for solving a fuzzy linear programming. K. J. Comp. Appl. Math. 8 (2001) 347–356. | MR | Zbl

A. Ruiz-Padillo, D. P. Ruiz, A. J. Torija and Á. Ramos-Ridao, Selection of suitable alternatives to reduce the environmental impact of road traffic noise using a fuzzy multi-criteria decision model. Envir. Impact Asse. Rev. 61 (2016) 8–18. | DOI

S. A. Sadabadi, A. Hadi-Vencheh, A. Jamshidi and M. Jalali, A new index for TOPSIS based on relative distance to best and worst points. Int. J. Info. Tech. Decis. Making 19 (2020) 695–719. | DOI

M. Tavana, M. Keramatpour, F. J. Santos-Arteaga and E. Ghorbaniane, A fuzzy hybrid project portfolio selection method using data envelopment analysis, TOPSIS and integer programming. Expert Syst. Appl. 42 (2015) 8432–8444. | DOI

Y. M. Wang and T. Elhag, Fuzzy TOPSIS method based on alpha level sets with an application to bridge risk assessment. Expert Sys Appl. 31 (2006) 309–319. | DOI

J. J. Wang, Y. Y. Jing, C. F. Zhang, G. H. Shi and X. T. Zhang, A fuzzy multi-criteria decision-making model for trigeneration system. Ener. Poli. 36 (2008) 3823–3832. | DOI

P. Wanke, M. A. K. Azad, C. P. Barros and A. Hadi-Vencheh, Predicting performance in ASEAN banks: an integrated fuzzy MCDM–neural network approach. Expert Syst. 33 (2016) 213–229. | DOI

G. Wei, F. E. Alsaadi, T. Hayat and A. Alsaedi, A linear assignment method for multiple criteria decision analysis with hesitant fuzzy sets based on fuzzy measure. Int. J. Fuzzy Syst. 19 (2017) 607–614. | MR | DOI

B. Yatsalo, A. Korobov and L. Martínez, Fuzzy multi-criteria acceptability analysis: a new approach to multi-criteria decision analysis under fuzzy environment. Expert Syst. Appl. 84 (2017) 262–271. | DOI

D. Yong and L. Qi, A TOPSIS-based centroid-index ranking method of fuzzy numbers and its application in decision-making. Cybern. Syst. 36 (2007) 581–595. | Zbl | DOI

A. Yücel and A. F. Güneri, A weighted additive fuzzy programming approach for multi-criteria supplier selection. Expert Syst. Appl. 38 (2011) 6281–6286. | DOI

L. A. Zadeh, Fuzzy sets. Inf. Cont. 8 (1965) 338–353. | MR | Zbl | DOI

Cité par Sources :