A Roman {2}-dominating function on a graph is a function satisfying the condition that every vertex for which is adjacent to either at least one vertex with or two vertices with . The weight of an is the value . The minimum weight of an on a graph is called the Roman -domination number of . An is called an independent Roman -dominating function if the set of vertices with positive weight under is independent. The minimum weight of an on a graph is called the independent Roman -domination number of . In this paper, we answer two questions posed by Rahmouni and Chellali.
Keywords: Roman {2}-domination, independent Roman {2}-domination, tree, algorithm
Wu, Pu 1 ; Li, Zepeng 1 ; Shao, Zehui 1 ; Sheikholeslami, Seyed Mahmoud 1
@article{RO_2019__53_2_389_0,
author = {Wu, Pu and Li, Zepeng and Shao, Zehui and Sheikholeslami, Seyed Mahmoud},
title = {Trees with equal {Roman} {2}-domination number and independent {Roman} {2}-domination number},
journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
pages = {389--400},
year = {2019},
publisher = {EDP Sciences},
volume = {53},
number = {2},
doi = {10.1051/ro/2018116},
zbl = {1426.05136},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ro/2018116/}
}
TY - JOUR
AU - Wu, Pu
AU - Li, Zepeng
AU - Shao, Zehui
AU - Sheikholeslami, Seyed Mahmoud
TI - Trees with equal Roman {2}-domination number and independent Roman {2}-domination number
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 2019
SP - 389
EP - 400
VL - 53
IS - 2
PB - EDP Sciences
UR - https://www.numdam.org/articles/10.1051/ro/2018116/
DO - 10.1051/ro/2018116
LA - en
ID - RO_2019__53_2_389_0
ER -
%0 Journal Article
%A Wu, Pu
%A Li, Zepeng
%A Shao, Zehui
%A Sheikholeslami, Seyed Mahmoud
%T Trees with equal Roman {2}-domination number and independent Roman {2}-domination number
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2019
%P 389-400
%V 53
%N 2
%I EDP Sciences
%U https://www.numdam.org/articles/10.1051/ro/2018116/
%R 10.1051/ro/2018116
%G en
%F RO_2019__53_2_389_0
Wu, Pu; Li, Zepeng; Shao, Zehui; Sheikholeslami, Seyed Mahmoud. Trees with equal Roman {2}-domination number and independent Roman {2}-domination number. RAIRO - Operations Research - Recherche Opérationnelle, Tome 53 (2019) no. 2, pp. 389-400. doi: 10.1051/ro/2018116
, and , Strong equality of Roman and weak Roman domination in trees. Dis. Appl. Math. 208 (2016) 19–26. | Zbl
, , , and , On the strong Roman domination number of graphs. Dis. Appl. Math. 231 (2017) 44–59. | Zbl
, and , Global Roman domination in trees. Graphs Comb. 31 (2015) 813–825. | Zbl
, , and , Extremal problems for Roman domination. SIAM J. Dis. Math. 23 (2009) 1575–1586. | Zbl
, and , Lower bounds on the Roman and independent Roman domination numbers. Appl. Anal. Disc. Math. 10 (2016) 65–72. | Zbl
, , and , Roman {2}-domination. Dis. Appl. Math. 204 (2016) 22–28. | Zbl
, , and , Roman domination in graphs. Dis. Math. 278 (2004) 11–22. | Zbl
, , and , On the Roman domination number of a graph. Dis. Math. 309 (2009) 3447–3451. | Zbl
, and , Fundamentals of Domination in Graphs. Marcel Dekker, New York, NY (1998). | Zbl
and , Defending the Roman empire – a new strategy. Dis. Math. 266 (2003) 239–251. | Zbl
and , Italian domination in trees. Dis. Appl. Math. 217 (2017) 557–564. | Zbl
, Theory of Graphs. American Mathematical Society, Providence, RI (1967). | Zbl
and , Independent Roman {2}-domination in graphs. Dis. Appl. Math. 236 (2018) 408–414. | Zbl
, , , and , On the signed Roman k-domination: complexity and thin torus graphs. Dis. Appl. Math. 233 (2017) 175–186. | Zbl
, , , and , On the co-Roman domination in graphs. Discuss. Math. Graph Theory 39 (2018) 455–472. | Zbl
Cité par Sources :





