@article{RO_2000__34_4_427_0,
author = {Fourneau, Jean-Michel and Verch\`ere, Dominique},
title = {G-R\'eseaux dans un environnement al\'eatoire},
journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
pages = {427--448},
year = {2000},
publisher = {EDP Sciences},
volume = {34},
number = {4},
mrnumber = {1815072},
zbl = {0991.90038},
language = {fr},
url = {https://www.numdam.org/item/RO_2000__34_4_427_0/}
}
TY - JOUR AU - Fourneau, Jean-Michel AU - Verchère, Dominique TI - G-Réseaux dans un environnement aléatoire JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2000 SP - 427 EP - 448 VL - 34 IS - 4 PB - EDP Sciences UR - https://www.numdam.org/item/RO_2000__34_4_427_0/ LA - fr ID - RO_2000__34_4_427_0 ER -
Fourneau, Jean-Michel; Verchère, Dominique. G-Réseaux dans un environnement aléatoire. RAIRO - Operations Research - Recherche Opérationnelle, Tome 34 (2000) no. 4, pp. 427-448. https://www.numdam.org/item/RO_2000__34_4_427_0/
1. , , et , Open, closed and mixed networks of queues with different classes of customers. J. ACM 22 (1975) 248-260. | Zbl | MR
2. , , et , G-networks: A survey of results, applications ans solutions, in QMIPS Conference.
3. , Computing the steady-state distribution of networks with positive and negative customers, in 13th IMACS World Congress on Computation and Applied Mathematics (1991).
4. , Random neural networks with negative and positive signals and product form solution. Neural Computation 1 (1990) 502-510.
5. , Product form queueing networks with negative and positive customers. J. AppL Probab. 28 (1991) 656-663. | Zbl | MR
6. , G-networks with signals and batch removal. Probab. Engrg. Inform. Sci. 7 (1992) 335-342.
7. , G-networks with triggered customer movement. J. AppL Probab. 30 (1993) 742-748. | Zbl | MR
8. et , Stability of G-networks. Probab. Engrg. Inform. Sci. 6 (1992) 271-276. | Zbl
9. et , Introduction aux réseaux de files d'attente. Eyrolles (1981). | Zbl
10. et , Pathways to solutions, fixed points et equilibria. Prentice-Hall (1981). | Zbl
11. , et , Queues with negative customers. J. Appl. Probab. 28 (1991) 245-250. | Zbl | MR
12. , Queueing networks with negative customers and negative queue lengths. J. Appl Probab. 30 ( 1993 ) 931-942. | Zbl | MR
13. et , Modelling defective parts in a flow using G-networks, in Second International Workshop on Performability Modelling of Computer and Communication Systems. Mont Saint-Michel, France (1993).
14. , et , Teletraffic modelling using queueing networks with signals, in ITC 13 (1991).
15. , et , State-dependent signalling in queueing networks. J. Appl. Probab. 26 (1994) 436-455. | Zbl | MR
16. , Mathematical Technics of Applied Probabilities, Vol. 2. Academic Press (1983).
17. , Networks of waiting lines. Oper. Res. 5 (1957) 518-52. | MR
18. , et , Multiple class G-networks with jumps back to zero, in Mascots'95. Durham, North Carolina, USA (1995).
19. , Reversibility and stochastic networks. John Wiley & Sons (1979). | Zbl | MR
20. , Méthodes et outils pour l'évaluation des performances des réseaux informatiques. Thèse de Doctorat, Université de Versailles Saint-Quentin-en-Yvelines (1997).
21. , Probability, stochastic processes and queueing theory, the mathematics of computer performance modeling. Springer Verlag (1995). | Zbl | MR
22. , Matrix Geometrie Solutions in Stochastic Models, an Algorithmic Approach. John Hopkins University Press (1981). | Zbl | MR
23. et , Markov-modulated queueing Systems. Adv. in Appl. Probab. 5 (1989) 215-246. | Zbl | MR
24. , De nouvelle méthodes de résolution pour l'analyse quantitative des systèmes parallèles et des protocoles. Thèse de Doctorat, Université Paris-Sud, Orsay (1994).
25. , Heuristics for the loss probability in finite buffer queues, in Conférence on Applied Probability in Engineering, Computer and Communication Sciences (1993).
26. , Méthodes analytiques d'évaluation de performance de systèmes informatiques. Thèse de Doctorat, Université Pierre et Marie Curie (1997).
27. , Markovian queueing networks in a random environment. Oper. Res. Lett. (1994). | Zbl | MR





