@article{RO_2000__34_3_283_0,
author = {Humes Jr., Carlos and Da silva E Silva, Paulo Jos\'e},
title = {Strict convex regularizations, proximal points and augmented lagrangians},
journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
pages = {283--303},
year = {2000},
publisher = {EDP Sciences},
volume = {34},
number = {3},
mrnumber = {1786463},
zbl = {1029.90069},
language = {en},
url = {https://www.numdam.org/item/RO_2000__34_3_283_0/}
}
TY - JOUR AU - Humes Jr., Carlos AU - Da silva E Silva, Paulo José TI - Strict convex regularizations, proximal points and augmented lagrangians JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2000 SP - 283 EP - 303 VL - 34 IS - 3 PB - EDP Sciences UR - https://www.numdam.org/item/RO_2000__34_3_283_0/ LA - en ID - RO_2000__34_3_283_0 ER -
%0 Journal Article %A Humes Jr., Carlos %A Da silva E Silva, Paulo José %T Strict convex regularizations, proximal points and augmented lagrangians %J RAIRO - Operations Research - Recherche Opérationnelle %D 2000 %P 283-303 %V 34 %N 3 %I EDP Sciences %U https://www.numdam.org/item/RO_2000__34_3_283_0/ %G en %F RO_2000__34_3_283_0
Humes Jr., Carlos; Da silva E Silva, Paulo José. Strict convex regularizations, proximal points and augmented lagrangians. RAIRO - Operations Research - Recherche Opérationnelle, Tome 34 (2000) no. 3, pp. 283-303. https://www.numdam.org/item/RO_2000__34_3_283_0/
1. , and , Asymptotic analysis for penalty and barrier methods in convex and linear programming. Math. Oper. Res. 22 (1997) 43-62. | Zbl | MR
2. , Constrained Optimization and Lagrange Multipliers. Academic Press, New York (1982). | MR
3. , Nonlinear Programming. Athena Scientific (1995). | Zbl
4. and , The proximal minimization algorithms with D-functions. J. Optim. Theory Appl. 73 (1992) 451-464. | Zbl | MR
5. , A necessary and sufficient condition to have bounded multipliers in nonconvex programming. Math. Programming 12 (1977) 136-138. | Zbl | MR
6. , Duality in non-linear programming, a simplified applications-oriented development. SIAM Rev. 13 (1971) 65-101. | Zbl | MR
7. and , Convex analysis and minimization algorithms. II. Advanced theory and bundle methods. Springer-Verlag, Berlin (1993). | Zbl | MR
8. and , An inexact classical proximal point algorithm viewed as a descent method in the optimization case. Technical Report RT-MAC 99-10. Instituto de Matemática e Estatística - USP (1999).
9. , Some comments on Lagrangian duality, optimality conditions and convexity. Investigación Oper. 2 (1991) 159-169.
10. , Métodos de Ponto Proximal em Otimização. Instituto de Matemática Pura e Aplicada - CNPq (1995). Book from the 20° Colóquio Brasileiro de Matemática.
11. and , On the convergence rate of entropic proximal minimization algorithms. Comput. Appl. Math. 12 (1993) 153-168. | Zbl | MR
12. , and , Entropy-like proximal methods in covex programming. Math. Oper. Res. 19 (1994) 790-814. | Zbl | MR
13. , Approximation et Optimisation. Collection Enseignement des Sciences. Hermann (1972). | Zbl | MR
14. , Régularisation d'inéquations variationelles par approximations successives. Rev. Française Inf. Rech. Oper. (1970) 154-159. | Zbl | MR | Numdam
15. , Détermination approché d'un point fixe d'une application pseudo-contractante, C.R. Acad. Sci. Paris 274A (1972) 163-165. | Zbl | MR
16. , Proximité et dualité dans un espace hilbertien. Bull. Soc. Math. France 93 (1965) 273-299. | Zbl | MR | Numdam
17. , Extension of Fenchel's duality theorem for convex functions. Duke Math. J. 33 (1966) 81-89. | Zbl | MR
18. , Convex Analysis. Princeton University Press (1970). | Zbl | MR
19. , Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1 (1976) 97-116. | Zbl | MR
20. , Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14 (1976) 887-898. | Zbl | MR
21. and , Variational analysis [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, Grundlehren Math. Wiss. 317 (1998). | Zbl | MR
22. and , A hybrid projection-proximal point algorithm. J. Convex Anal. 6 (1999). | Zbl | MR
23. and , An inexact hybrid extragradient-proximal point algorithm using the enlargement of a maximal monotone operator. Set-Valued Analysis (to appear). | Zbl | MR
24. , Entropic proximal methods with aplications to nonlinear programming. Math. Oper. Res. 17 (1992) 670-690. | Zbl | MR
25. and , An elementary survey of general duality theory in mathematical programming. Math. Programming 20 (1981) 241-261. | Zbl | MR





