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L’INGÉNIEUR NICOLAS MINORSKY (1885–1970) ET LES

MATHÉMATIQUES POUR L’INGÉNIERIE NAVALE, LA THÉORIE

DU CONTRÔLE ET LES OSCILLATIONS NON LINÉAIRES

Loı̈c Petitgirard

Résumé. — L’article présente le parcours et les travaux de l’ingénieur naval
Nicolas Minorsky, au carrefour du monde des ingénieurs et des mathéma-
tiques. À travers ses travaux de 1922, synthétisés dans son article « Directional
stability of automatically steered bodies », on montre comment Minorsky
articule la construction de savoirs mathématiques et l’ingénierie du contrôle
de navires. Dans les années 1930–40, Minorsky développe ses théories, et se
fait le promoteur des théories des oscillations non linéaires et de la stabilité,
dans la perspective des questions navales, et au-delà pour tous les problèmes
d’ingénieur. Minorsky est également le concepteur d’un système de calcul
analogique baptisé « Analogues dynamiques », resté très confidentiel jusqu’à
récemment. Le système a été conçu, et réalisé partiellement en 1935, afin d’ap-
porter des réponses calculatoires, qualitatives et quantitatives, pour l’analyse
de systèmes dynamiques non linéaires. Entre nécessités du terrain et mathéma-
tiques, Minorsky a beaucoup de caractéristiques de l’« ingénieur-savant ». Nous
montrons enfin en quoi son épistémologie, sa vision des rapports entre mathé-
matiques, physique et technique, sont déterminantes dans l’ensemble de ses
travaux, et en particulier dans sa conception des « Analogues dynamiques ».

Abstract (Nicolas Minorsky (1885–1970) and the mathematics for naval engi-
neering, control theory and nonlinear oscillations)
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This paper deals with the life and work of Nicolas Minorsky, a naval engi-
neer who worked at the crossroad of the worlds of mathematics and engineer-
ing. Through his seminal work of 1922, “Directional stability of automatically
steered bodies”, we show how Minorsky dealt with the interplay between math-
ematical knowledge and the steering of ships. During the 1930–40s, he advo-
cated for nonlinear oscillations and stability theories among the academic and
naval institutions, with ships conception in mind, and considering they are rel-
evant for engineering problems in general. Minorsky also invented an analog
computing device called “Dynamical analog” that remained confidential until
recently. This system was conceived, and partially released in 1935, in order to
render (compute) qualitative and quantitative information about nonlinear dy-
namical systems. Facing practical needs and mathematical theories Minorsky is
a kind of “ingénieur-savant”. Eventually, we emphasize his epistemology, his vi-
sion of the relationships between mathematics, physics and technology, which
are very significant in his work and his conception of the “Dynamical analog”.

INTRODUCTION

L’histoire des rapports entre le monde des ingénieurs et celui des ma-
thématiciens est progressivement devenue un chapitre important de l’his-
toire des mathématiques. À travers l’étude de contextes locaux, de travaux
d’ingénieurs situés, par leur activité, à la frontière avec les mathématiques,
la place des ingénieurs dans cette histoire commence à être pleinement
reconnue. En témoignent les travaux récents sur l’histoire du calcul et des
instruments de calcul1. Il faut insister également sur le fait que les travaux
des xix

e et xx
e siècles dans des domaines aussi variés que le génie mili-

taire (maritime, aéronautique, artillerie, balistique...), le génie civil, la mé-
canique, recèlent des problèmes mathématiques redoutables auxquels les
ingénieurs ont été confrontés. Les analyses convergent pour admettre l’im-
portance de ces problèmes dans le développement des mathématiques, de
la concomitance entre les pratiques du calcul, la conception des instru-
ments de calcul et le développement de la pensée mathématique. Ces ques-
tions qui concernent directement l’ingénieur ne peuvent pas être considé-
rées simplement comme terrains d’applications de mathématiques toutes
prêtes à l’emploi. Incontestablement, le terrain de l’ingénieur se situe pa-
rallèlement à ceux du physicien et de l’astronome, comme lieu récurrent
d’élaboration de théories mathématiques nouvelles, d’abord adaptées à la
résolution de problèmes concrets avant de dépasser ce cadre restreint.

1 Voir notamment [Tournès 2000] et [Tournès 2003].
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S’il existe des ponts, il existe aussi des clivages entre mathématiques
et ingénierie. Malgré la forte mobilisation pour la formation des ingé-
nieurs au xix

e siècle, une dichotomie s’est installée dans la perception
réciproque de ces deux mondes : spécialisation croissante des disciplines,
institutionnalisation des formations, complexité des problématiques,
pour ne citer que quelques dynamiques de fond, ont à la fois fait diverger
les centres de préoccupation des mathématiciens académiques et des
ingénieurs, et rendu nécessaire à l’ingénieur un savoir mathématique
conséquent2.

L’ingénieur russe Nicolas Minorsky (1885–1970) œuvre précisément
au croisement de ces problématiques. Formé comme ingénieur naval,
il est un spécialiste de la conception des navires, de la stabilisation et
du contrôle de ces bâtiments, sur une période d’activité allant de 1918
jusqu’à son décès en 1970. Dépositaire de nombreux brevets, il sera aussi
reconnu comme une référence en théorie du contrôle3. Nous montrerons
en quoi Minorsky est un ingénieur naval atypique, volontiers théoricien
et mathématicien. Dans le contexte des recherches navales, et de par
sa formation, il est concerné par nombre de problèmes théoriques tou-
chant aux mathématiques des équations différentielles, principal outil de
la « théorie » navale, c’est-à-dire, comme nous l’appellerions en termes
contemporains, de la modélisation mathématique du comportement des
navires.

Nous présentons donc ici ce personnage encore méconnu, au parcours
emblématique des contacts et divergences entre le monde des ingénieurs
et celui des mathématiciens, en recontextualisant systématiquement ses
travaux. Ces rapports entre ingénieurs et mathématiques se complexi-
fient au fil du xx

e siècle avec le développement des théories prenant en
considération les phénomènes non linéaires : c’est un point sur lequel

2 Christiane Dujet-Sayyed le souligne clairement dans « Les mathématiques pour
l’ingénieur : un dialogue à nouer ou renouer ? », Octobre 2008, M2REAL (disponible
à l’adresse : http://www.m2real.org/spip.php?article97).
3 La théorie du contrôle désigne l’ensemble des théories mathématiques qui per-
mettent de déterminer des lois de contrôle, de guidage et de commande pour un sys-
tème donné. Les problèmes de contrôle sont de natures très diverses : conduite de
véhicules, de navires, mise en orbite de satellites, optimisation, régulation thermo-
statique, conduite de processus industriels, etc. Dans les théories modernes ces pro-
blèmes sont modélisés avec des systèmes dynamiques. Contrôler le système signifie
conduire le système d’un état initial à un état final en suivant certaines contraintes
(d’optimisation ou de stabilisation, par exemple). Pour une présentation de l’histoire
des théories et de l’ingénierie du contrôle voir [Bennett 1986 ; 1993].

http://www.m2real.org/spip.php?article97
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nous insisterons, étant donné les contributions de Minorsky concernant
les théories des oscillations non linéaires et du contrôle non linéaire4.

Dans une première courte partie nous présentons le parcours initial
(avant 1917), la formation de Minorsky en Russie, d’autant plus impor-
tante qu’elle constitue le socle de sa pratique d’ingénieur. Le parcours
« américain » (c’est-à-dire sur la période 1918–1945) du russe blanc Mi-
norsky est très significatif des apports réciproques des mathématiques et de
l’ingénierie, du difficile dialogue entre ces deux cultures, de l’importance
du contexte institutionnel pour la réalisation d’un dialogue fructueux et
du caractère crucial de la formation des ingénieurs dans les innovations
technologique et mathématique. La seconde partie aborde ces rapports
complexes entre mathématiques et ingénierie en focalisant l’attention sur
les travaux de Minorsky au cours de l’année 1922, synthétisés dans son
article : « Directional stability of automatically steered bodies ».

Dans une troisième partie, il convient de préciser comment Minorsky
participe à la reconnaissance plus large, hors de l’URSS des années 1930,
des théories modernes des oscillations non linéaires. Minorsky se fait l’avo-
cat de la nécessité de produire des résultats mathématiques adaptés aux
questions maritimes, et plus généralement aux problèmes de l’ingénieur.
Nous montrerons également que Minorsky est un acteur résolu du rappro-
chement entre problématiques des ingénieurs et des mathématiciens. Il
engage des efforts d’ouverture en direction du milieu académique et des
ingénieurs, dès les années 1930, mais ils porteront leurs fruits seulement à
partir de 1940.

En rapport avec les théories des oscillations non linéaires et les théories
de la stabilité5, Minorsky conçoit un système de calcul baptisé « Analogues
dynamiques », resté très confidentiel jusqu’à récemment. Ce système de

4 Les théories des oscillations non linéaires désignent l’ensemble des théories ma-
thématiques (et physiques) pour rendre compte des phénomènes oscillatoires non
linéaires, en vue de leur compréhension ou leur contrôle (stabilisation, réduction de
bruits, conduite de processus, etc.). La non linéarité peut être liée, par exemple, à
des frottements (systèmes mécaniques), un doublement de fréquence (optique), à
un composant électronique à caractéristique non linéaire. Dans tous les cas, les effets
(sortie) de ces composants ne peuvent plus être considérés comme proportionnels
au signal d’entrée. Les non linéarités se retrouvent alors dans les équations modéli-
sant le phénomène sous la forme de termes quadratiques, cubiques, de produits de
plusieurs variables, ou de fonctions plus complexes, selon les cas (voir [Petitgirard
2004] et [Ginoux 2011] pour des aperçus historiques relatifs au développement de
ces theories, depuis les années 1920–30).
5 Dans le cadre de cet article, les theories de la stabilité sont les théories mathéma-
tiques permettant l’étude de la stabilité des trajectoires de systèmes dynamiques, c’est-
à-dire la stabilité des solutions soumises à des petites perturbations. Alexander Lya-
pounov (1857–1918) est souvent considéré comme un fondateur de ces théories avec
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calcul analogique a été conçu et réalisé partiellement par Minorsky vers
1935, afin d’apporter des réponses calculatoires au sujet de systèmes dy-
namiques non linéaires, non intégrables analytiquement. C’est l’objet de
la quatrième partie, replaçant ces travaux dans le contexte du MIT auquel
Minorsky est affecté l’année en question.

Derrière les nécessités pratiques auxquelles Minorsky est confronté,
nous montrerons son épistémologie à l’œuvre, sa vision des rapports entre
mathématiques, physique et technique, déterminantes dans la conception
des « Analogues dynamiques ». Si les « Analogues dynamiques » sont restés
sans suite ils sont néanmoins le révélateur d’un besoin en calcul qui ira
toujours croissant, et qui trouve ponctuellement une réponse ad hoc avec
Minorsky.

Une brève cinquième partie donne quelques perspectives sur les tra-
vaux de Minorsky pendant la Seconde Guerre mondiale, puis sa retraite
très active. Nous conclurons sur l’importance de considérer les passeurs
de frontières tels que Minorsky dans les analyses historiques du déve-
loppement des mathématiques, que ce soit pour leurs succès ou leurs
échecs, toujours significatifs. Et nous tenterons de préciser en quoi il
peut être tenu pour un « ingénieur-savant ». Nous faisons ici référence
aux travaux de Grattan-Guinness [1993] et Chatzis [2010] qui ont in-
troduit la notion d’« ingénieur-savant », pour designer des ingénieurs
pris entre théorie et pratique, entre production de connaissances scien-
tifiques et le « terrain ». Ils sont plus précisément Polytechniciens (ou
formés dans des écoles équivalentes). Ils sont capables de mobiliser des
connaissances scientifiques dans une pratique technique, d’ingénieur.
Et, inversement, ils peuvent nourrir, voire ouvrir, de nouvelles branches
des savoirs scientifiques à partir d’interrogations empiriques. Dans les
branches de la Mécanique appliquée, de l’hydraulique, ou de la thermo-
dynamique, les « ingénieurs-savants » sont à l’image de Poncelet, Coriolis,
Navier, Carnot. Les « ingénieurs-savants » se distinguent en cela des sa-
vants « académiques » inscrits dans une discipline, comme la géométrie
ou l’astronomie. Cette denomination a été introduite pour catégoriser
des ingénieurs dans la période 1820–1860 surtout. Nous verrons ici en
quoi Minorsky peut se caractériser comme un « ingénieur-savant » du
xx

e siècle.

son traité de 1892 « Problème général de la stabilité des mouvements » [Lyapounov
1907] (traduit en français en 1907).
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1. LA FORMATION D’UN INGÉNIEUR AU SERVICE DE LA MARINE

Lorsque Minorsky livre son article « Directional stability of automatically
steered bodies en 1922, il a déjà une vie bien remplie6. Né le 24 septembre
1885 à Korcheva, en Russie, il est formé comme ingénieur de la Marine à
l’École navale de Saint-Pétersbourg en 1908, puis à l’École polytechnique
impériale (1911–1914) dans la même ville (rebaptisée Petrograd) : il ob-
tient un diplôme de docteur en sciences appliquées. Au cours de sa forma-
tion il s’est rendu à Nancy pour suivre un cursus en ingénierie électrique,
durant lequel il bénéficiera également des cours du mathématicien Gus-
tave Floquet, probablement au cours de l’année 1908. Minorsky a eu dès
le départ une formation multidisciplinaire, à trois facettes : scientifique,
technique et militaire.

Pour souligner la valeur de cette formation, il est nécessaire de la
rattacher au contexte scientifique de Saint-Pétersbourg, au tournant du
xx

e siècle. Rappelons que l’université de cette ville est un haut lieu de la
formation scientifique et technique, marqué par l’action et les travaux ma-
thématiques de Pafnouti Chebychev (1821–1894). Alexander Lyapounov
(1857–1918) en fut un des grands héritiers, présent à Saint-Pétersbourg
mais ne donnant pas de cours lorsque Minorsky est en formation [Smir-
nov 1948]. Il est l’auteur en 1892 du traité de référence sur le « Problème
général de la stabilité des mouvements »7. Alexei N. Krylov (1863–1945),
ingénieur de la Marine russe et auteur de travaux pionniers dans les an-
nées 1890 sur les mouvements oscillatoires des navires, comme le roulis,
a été une autre pièce clé de cette mosaı̈que8. L’influence des travaux
de Krylov sur Minorsky est difficile à quantifier, mais certainement im-
portante : la construction d’un navire est pour Krylov une application
des mathématiques aux questions maritimes, ce qui décrit assez bien la

6 Pour cette première partie de la vie de Minorsky, nous tirons les informations de :
[Bennett 1984, p. 10–11], et surtout [Flügge-Lotz 1971]. À notre connaissance, il reste
très peu (et probablement aucune hors du strict état-civil) d’archives antérieures à
1918 et son départ de Russie. Soulignons également que sa ville natale, Korcheva, a
été submergée à l’occasion de la construction du canal entre la Volga et la rivière Mos-
kova, en 1937.
7 [Lyapounov 1907], traduit en français en 1907 (par un ingénieur de la Marine
française, Edouard Davaux).
8 En 1898, il reçoit le prix de la Royal Institution of Naval Architect, pour ses travaux
théoriques sur les navires, extension des recherches de William Froude. Krylov a en-
seigné à l’Académie navale de Saint-Pétersbourg, dont Minorsky est tout proche : il est
fort probable qu’il ait suivi les cours de Krylov, mais nous ne sommes pas en mesure
de l’affirmer fermement.
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perspective adoptée par Minorsky. Krylov est en outre à l’origine du pre-
mier calculateur analogique en Russie, en 19049. Minorsky bénéficie donc
d’une formation et d’une culture scientifique et technique élargie, qui a
peu d’équivalent dans le monde de l’ingénierie navale, hors de Russie.

Durant le premier conflit mondial Minorsky est lieutenant dans les
forces navales russes, servant une année d’attaché à l’ambassade russe à
Paris. La révolution russe le pousse à émigrer10, et dès juin 1918 il arrive
aux Etats-Unis, où il tire rapidement profit de son bagage d’ingénieur en
électricité. General Electrics à New York le recrute et c’est là qu’il entre-
prend ses recherches sur l’installation d’un pilote automatique sur navire,
et publie en 1922 la première discussion formelle, en langue anglaise, du
contrôle de direction des navires. Ces éléments théoriques se confrontent
au concret avec les tests grandeur nature sur l’USS New Mexico. L’expé-
rience s’avèrera révélatrice de l’importance et de la valeur de ses résultats
théoriques, qu’il amplifiera par la suite.

2. LES TRAVAUX DE MINORSKY SUR LA STABILISATION DES NAVIRES

2.1. L’ingénieur naval et la stabilisation en direction des navires (1922–1923)

L’article de 1922 « Directional stability of automatically steered bodies »
vaut à Minorsky d’être connu dans l’histoire de l’ingénierie du contrôle.
Cet article est considéré comme l’analyse théorique la plus aboutie, entre
les deux guerres, sur la question des systèmes de contrôle de type PID
(pour « Proportional-Integral-Derivative »). Stuart Bennett, dans son
histoire de l’ingénierie du contrôle, l’a même placé au rang des contribu-
tions fondamentales de James Clerk Maxwell (1868), Edward Routh (vers
1877) et Adolf Hurwitz (1895)11. Ce n’est qu’une étape dans les travaux
de Minorsky, néanmoins fondatrice de son intérêt pour la question de la
stabilité en régime d’oscillations non linéaires et les questions du calcul

9 Nous renvoyons à la partie 4 du présent texte et à [Trogemann et al. 2002, p. 13].
10 Nous n’avons aucune archive particulière permettant de préciser les raisons
exactes et le moment où a été prise cette décision. Minorsky fait partie du flux de
« russes Blancs » ayant choisi pour terre d’asile les Etats-Unis.
11 Nous renvoyons à ses deux ouvrages, couvrant la période 1800–1955 ([Bennett
1986] et [Bennett 1993]), ainsi qu’à son article consacré spécifiquement aux travaux
de Minorsky : [Bennett 1984, p. 10]. Les travaux majeurs de Maxwell (1831–1879)
sont publiés dans « On governors » en 1868 [Maxwell 1868]. Maxwell introduit les
équations différentielles linéaires de plusieurs systèmes de contrôle : à cette époque,
la stabilité est déterminée à partir des racines de l’équation caractéristique, et le sys-
tème devient instable dès lors que la partie réelle d’une racine complexe devient
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des solutions des systèmes d’équations différentielles. Pour saisir cet en-
semble de travaux, il est nécessaire de recontextualiser les contributions
de Minorsky dans l’histoire des recherches pour la Marine.

2.2. Un problème technique de la Marine

Rappelons que c’est dans ce milieu de la Marine, au xix
e siècle, et non

dans un autre corps d’armée, que les questions de stabilisation et contrôle
apparaissent en premier. Le fait est que, comme le rappelle l’historien H.
Sapolsky, la Marine a été une arme très accommodante pour les scienti-
fiques, en Russie comme ailleurs12. Les officiers sont davantage formés à
la technique que dans l’armée de Terre. Minorsky n’en est qu’un exemple
parmi d’autres, tel Krylov, ou encore le physicien américain Albert A. Mi-
chelson (1852–1931) connu pour ses travaux au sein de l’Académie na-
vale à Annapolis (United States Naval Academy). L’aéronautique posera
les mêmes questions de stabilisation, mais seulement au xx

e siècle. En Rus-
sie, Nikolai Joukowski (1847–1921) fait figure d’alter ego de Krylov dans le
monde de l’hydrodynamique et de l’aéronautique.

De manière générale, les inventions et applications relatives au
contrôle, jusqu’au début du xx

e siècle, ont été d’abord des problèmes de
régulation et de stabilisation : contrôle de température, de pression, de
vitesse de rotation dans les machines à vapeur. Avant que l’électrotech-
nique ne soit elle-même confrontée à ce type de problèmes de stabilité
et contrôle, les domaines de la « vapeur », les moyens de transport en
particulier, sont quasiment les seuls demandeurs13.

La construction de navires toujours plus grands nécessite que des sys-
tèmes d’assistance et de contrôle de plus en plus fiables et efficaces soient
inventés. Et la stabilisation de la direction des navires est une donnée im-
portante pour assurer des tirs depuis les navires, pour une artillerie de plus
en plus lourde, et pour l’utilisation des torpilles. Telle est la problématique

positive. Le mathématicien britannique Edward Routh (1831–1907) a repris ces tra-
vaux dans son Treatise on the stability de 1877 [Routh 1877]. Et le mathématicien al-
lemand Adolf Hurwitz (1859–1919) aboutit, indépendamment, au même critère en
1895 [Hurwitz 1895], critère désormais appelé « critère de Routh-Hurwitz ».
12 [Sapolsky 1990, p. 5] : « Survival at sea pits man against nature more than it does
man against man. It is not surprising that naval officers would do pioneering work in
navigation, meteorology, and engineering and that the Navy would build enduring
scientific institutions such as the Naval Observatory and the Naval Research Labora-
tory. [...] Moreover, the construction and maintenance of ships requires the preser-
vation within the Navy of engineering skills firmly based on scientific disciplines. »
13 Voir [Bennett 1986, p. 154] et tout le chapitre 5 « The new technology : electri-
city ».
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de la construction de bâtiments de guerre modernes, problème saillant
pour les Marines de tous les pays alors développés.

C’est à la suite de l’invention du gyrocompas (entre 1898 et 1908,
date des brevets importants de l’ingénieur américain Elmer Sperry14)
que sont apparus les premiers gyropilotes qui ouvrent la voie au contrôle
automatique des navires. Pour toutes ces raisons Minorsky s’engage dans
la recherche sur le contrôle, ajoutant alors que les méthodes envisagées
jusqu’en 1920 doivent être considérées comme peu « scientifiques ».
Minorsky critique le caractère intuitif du pilotage manuel et engage la
recherche d’une solution analytique du problème :

It has often been stated that the human intuition of the helmsman cannot
be replaced by any mechanical contrivance whatever its nature may be. Such a
standpoint seems to be erroneous, as far as the problem of automatic steering is
concerned, since there is not so much question of intuition as of suitable timing
based on actual observation. Once the element of observation is removed from
the helmsman, there can be no accurate steering whatever his intuition may be.

The question, therefore, arises as to how the observation must be co-related
to the timing of the rudder in order to obtain accurate steering ?

If, therefore, accurate steering is nothing more than a special kind of timing
of the rudder complicated by the inertia of the body to be steered, we may ex-
pect to be able to establish analytically what kind of timing must be adopted in
order to reach the best possible conditions for direction stability » [Minorsky
1922, p. 283].

2.3. Analyse générale de la stabilité en direction, 1922

Pour passer de la pratique empirique, à la théorie, Minorsky s’appuie
sur un découpage schématique des actions à réaliser pour stabiliser le na-
vire en direction. En termes techniques, contrôler la direction du navire se
décompose en deux opérations : mesurer la déviation à la direction souhai-
tée, mais sans perturber le compas, ce qui est la première difficulté ; puis
appliquer une correction pour rétablir le cap. L’opérateur, c’est-à-dire ce-
lui qui dirige le bâtiment, applique alors la déviation selon son intuition et
son expérience, ce que Minorsky dénonce. Son système automatique vise
à rationaliser cette opération.

Pour poser le problème en termes plus théoriques, Minorsky propose
de partir d’un bateau « simplifié » ayant néanmoins valeur générale : un so-
lide flottant soumis à un ensemble de forces. Le terme de « modèle » n’est
pas utilisé par Minorsky qui désigne sa démarche par « théorie » du navire.

14 Pour le lecteur intéressé, nous renvoyons aux deux brevets US nř 1,255,480 et
1,279,411. Elmer Sperry a été un ingénieur prolifique. [Hughes 1971].



182 L. PETITGIRARD

Le navire est considéré comme un parallélépipède dont la dynamique ré-
pond aux lois classiques de la mécanique. Sur la base de cette représenta-
tion, il s’attache à linéariser l’ensemble des équations en considérant seule-
ment des petites oscillations, pour aboutir à l’équation différentielle :

A
d2�

dt2
+ B

d�

dt
+ k� = D

où � est l’angle de déviation par rapport à la course choisie, A le moment
d’inertie du navire (selon un axe vertical, pris au centre d’inertie), B le
coefficient de friction, � l’angle du gouvernail et k une constante dépen-
dante du gouvernail, et D la torsion perturbatrice.

Minorsky se livre à l’analyse du problème : contrôler le navire signifie
agir sur le gouvernail (en modifiant l’angle � et ses variations dans le
temps) en fonction de la donnée de l’écart � (et ses dérivées). Il existe
différentes stratégies possibles de contrôle, Minorsky établit des classes
de contrôle, selon que la déviation � est répercutée sur l’angle �, sur le
taux de changement de l’angle �, ou sur une dérivée d’ordre encore plus
élevée [Minorsky 1922, p. 290]. Les deux premières classes sont les plus
importantes à ses yeux :

Classe 1 : � = m�+ n
d�

dt
+ p

d2�

dt

Classe 2 :
d�

dt
= m1�+ n1

d�

dt
+ p1

d2�

dt2
:

En reportant successivement dans l’équation fondamentale linéarisée, il
dresse les conclusions suivantes. Un système de contrôle de classe 1 sera
efficace pour amortir une perturbation ponctuelle, mais n’éliminera pas
une action perturbatrice plus permanente, telle qu’un vent continu (Ibid.
p. 299). Dans le cas le plus simple où n = p = 0, l’amortissement15 dé-
pend de A et du rapport B=2A : or pour des navires de taille importante,
le paramètre A croı̂t plus vite que B , ce qui signifie que ce type de contrôle
est d’autant moins efficace que le navire est gros. C’est ce qui explique les
échecs des tentatives de reproduire à grande échelle ce qui fonctionnait
pour des petites embarcations à l’époque. Par conséquent, selon la taille
du navire, la classe 1 est à écarter.

15 L’amortissement correspond aux racines de l’équation caractéristique de l’équa-
tion différentielle.
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Pour la classe 2, impliquant un contrôle sur la vitesse de rotation du gou-
vernail, l’introduction de la relation entre � et � dans l’équation fonda-
mentale aboutit à :

A
d3�

dt3
+ (B + kp)

d2�

dt2
+ kn

d�

dt
+ km� =

dD

dt
:

Ce cas correspond à ce qui est aujourd’hui considéré comme un système
PID (Proportional-Integral-Derivative, renvoyant aux actions Proportio-
nelles-Intégrales-Dérivées sur la quantité à réguler) :

� = m

Z
� dt+ n�+ p

d�

dt
:

Vient ensuite le résultat clé de Minorsky, dans le cas où la perturbation est
continue c’est-à-dire : dD=dt = 0. Dans ce cas la perturbation n’a pas d’in-
fluence sur les performances du système16. Et il obtient les conditions de
stabilité sans résoudre analytiquement l’équation de degré trois17, en s’ins-
pirant des résultats du physicien français André Blondel (1863–1938)18.

À travers cet article, il ressort tout d’abord que Minorsky est un ingé-
nieur volontiers théoricien. Son analyse mathématique doit servir, dans
son esprit, de guide préalable à la conception d’un système opération-
nel. Cependant, il ne s’agit pas encore de problèmes d’oscillations non
linéaires, puisque Minorsky choisit de se placer dans un régime d’oscilla-
tions faibles, ce qui permet de linéariser les équations. Mais il reconnaı̂t
les limites de ce procédé et perçoit que les caractéristiques des oscilla-
tions hors de ce régime sont importantes19. Précisons qu’il n’emploie pas
encore le terme « non linéaire » pour ce type d’oscillations.

D’autre part, il est de plain-pied dans les mathématiques de la stabilité
et des équations différentielles : ses références aux travaux de Blondel de

16 Ibid., p. 300 : « [...] from which follows the remarkable result that such a distur-
bance has no influence upon the performance of the device, depending solely upon
the inertia A of the ship, the resistance B and the constants m, n, p representing the
intensities of the corresponding components of the control. »
17 Les conditions sont les suivantes : B + Kp > 0 ; (b + Kp)Kn � AKm > 0 ; Km > 0.
Ibid., p. 301–302 : « A complete solution of the auxiliary equation of the third degree
is not necessary [...] M. A. Blondel has shown that by applying the so-called Hurwitz
theorem of Analysis, the « stability of roots » of an algebraic equation of the nth degree
can easily be established. ». Ici Minorsky cite [Blondel 1919].
18 Ingénieur, physicien, spécialiste de l’électrotechnique et de la radiotechnique,
Blondel a produit autant de brevets que d’articles très théoriques sur le fonctionne-
ment des systèmes électriques. Voir [Ginoux 2011].
19 [Minorsky 1922, p. 283]. Si on ne se contente pas des petites déviations, Minorsky
souligne qu’il n’existe pas de traitement analytique possible : « for in the case of unli-
mited angular motion [...] there is no analytical expression applicable to the various
torques acting on a ship in general ».
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1919, sur les « Systèmes à oscillations persistantes » sont très significatives
de ce point de vue et très remarquables car Blondel aborde une question
d’oscillations dans les circuits électriques. En suivant les travaux récents
de Ginoux20, il apparaı̂t que ce texte de Blondel est significatif d’un effort
scientifique autour des théories des oscillations dans le tournant des an-
nées 1920, avant que les travaux d’Andronov et de ses collaborateurs n’in-
jectent les concepts des mathématiques « à la Poincaré » dans ce qui de-
viendra une théorie des oscillations non linéaires (cf. infra).

Les travaux de Blondel sont sans rapport a priori avec l’ingénierie na-
vale. Mais il faut saisir que les équations différentielles de la dynamique de
ces systèmes sont similaires, ce que Minorsky a parfaitement compris : sa
formation en ingénierie électrique a probablement facilité sa perception
des analogies entre problèmes électriques et problèmes de l’ingénierie na-
vale. L’analogie est implicite, les équations différentielles sont les supports
de ces analogies. Mais Minorsky s’inscrit d’abord explicitement dans la ré-
solution du problème naval, avec ses contraintes et sa singularité.

La présentation inscrite dans ce cadre restreint et sa publication dans
une revue spécialisée pour ingénieur naval, réduisent de fait l’impact de
l’article, alors que ses résultats ont valeur générale. C’est ce qui explique
le décalage entre le temps de la diffusion et celui de la pleine reconnais-
sance dans la théorie du contrôle qui sera plus tardive : Bennett a montré
comment la classification des types de contrôles et l’addition des compo-
santes PID pour assurer le contrôle ont marqué l’histoire de la théorie du
contrôle. Le système PID s’est répandu dans les théories du contrôle, tout
en oblitérant cette généalogie : c’est probablement grâce aux travaux his-
toriques de Bennett que Minorsky a retrouvé ce statut de figure importante
de l’histoire du contrôle (en particulier avec son ouvrage [Bennett 1984]).

2.4. 1923 : USS New Mexico

Fort de son analyse il est engagé dans la mise en place pratique d’un
système différentiel pour « résoudre » le problème du pilotage automa-
tique sur un bâtiment de la Marine américaine, l’USS New Mexico. Le
récit complet de l’expérience sera rendu public en 193021 seulement.

20 Voir la thèse de Ginoux [Ginoux 2011], et particulièrement les pages 79 et sui-
vantes concernant Blondel.
21 Il s’agit en fait de deux brevets US no 1 436 280 « Automatic steering device » (c’est
la première définition d’un système automatique par Minorsky, qui remonte à 1918
et repose sur une partie des analyses qui ne sont publiées qu’en 1922 ; le brevet est
délivré en novembre 1922) et du US no 1 703 280 « Directional stabilizer », déposé en
septembre 1922. Minorsky fait état de ces tests dans « Automatic steering tests », 1930.
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Minorsky conçoit un prototype, reposant sur deux brevets qu’il a déposés,
Comment automatiser la rotation du gouvernail pour garder un cap ?
En combinant les données recueillies par des instruments de bord (gy-
rocompas, gyromètre, système pour mesurer l’accélération), le système
électro-mécanique applique la correction en temps réel sur le gouvernail.
La commande est réalisée selon une action de contrôle de classe 1, dans
laquelle la composante en accélération est nulle, c’est-à-dire p = 0 (dans
cette première phase de tests).

Son prototype est le point de départ des tests. Il sert à calibrer le dis-
positif sachant que Minorksy ne dispose d’aucune donnée empirique à
ce moment-là : il n’a conçu qu’une « théorie » qu’il cherche maintenant
à confronter à la réalité maritime, c’est-à-dire en déterminant les coeffi-
cients m et n du système mathématique. Le prototype est ensuite amélioré
et augmenté. Dans leur ensemble, les tests montrent la faisabilité d’un
système complet et opérant : le contrôle en direction est correct et effec-
tif. Minorsky a pu également expérimenter l’addition d’une composante
de contrôle sur la dérivée d’ordre deux (accélération) avec succès. Les
résultats sont donc positifs, et constituent un retour d’expérience validant
une bonne partie des analyses mathématiques de 1922. Mais l’US Navy
décidera d’abandonner le projet en 1930, après d’autres essais. Dans la
Navy le problème est d’ordre psychologique, et non pas technique : les
marins ne veulent pas de pilote automatique22. Pour les marines mar-
chandes plusieurs systèmes concurrents sont commercialisés mais ils ne
rivalisent pas avec celui de la Navy. Le plus connu d’entre eux est celui
de Sperry, construit d’après les intuitions de celui-ci, mais qui laisse place
à beaucoup d’approximations dans le contrôle de direction. Or la posi-
tion de Minorsky est bien de ne plus laisser court aux approximations.
Le système Sperry ne sera significativement amélioré qu’en 1937, après
que Minorsky en ait fait l’analyse théorique ([Bennett 1984, p. 14]). Si
Minorsky a été perspicace dans l’analyse et la conception d’un système
de pilotage, en revanche, il n’a pas les talents commerciaux de Sperry, ni
le soutien industriel, qui lui auraient permis de valoriser ses recherches.
Minorsky vend son brevet à la société Bendix Aviation.

22 Ainsi s’exprime le capitaine H.S. Howard de la Navy, cité dans [Henderson 1934,
p. 30] : « [...] the operating personnel at sea were very definitely and strenuously op-
posed to automatic steering, and they wished us to have nothing further to do with it
after these tests were completed. »
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Figure 1. Diagramme du système de pilotage, inspiré des analyses
de 1922 (système de classe 1, cf. [Bennett 1984, p. 12]).

3. MINORSKY ET LES MATHÉMATIQUES
DES OSCILLATIONS NON LINÉAIRES

Ces tests sur l’USS New Mexico ne sont qu’une petite partie de l’acti-
vité de Minorsky des années 1923–1930. Fort de son expérience dans le
domaine de l’ingénierie électrique, Minorsky obtient un poste de profes-
seur à l’université de Pennsylvanie, qu’il gardera sur la période 1923–1934.
Il enseigne l’électricité et la physique appliquée, et fait désormais de la re-
cherche en physique. Il travaille de nouveau pour l’US Navy, au sein du
Naval Research Laboratory23, et sera ensuite affecté au David Taylor Mo-
del Basin (DTMB)24, construit entre 1937 et 1939. Ces nouveaux « labo-
ratoires » de la Marine sont le cadre dans lequel vont se poursuivre ses re-
cherches.

Déjà en 1922, il est un ingénieur proposant une analyse théorique au
fait des mathématiques de son temps. Son intérêt pour cette analyse théo-
rique va croissant et il élargit ses problématiques à diverses questions de
stabilisation du navire. Minorsky persévère dans la mathématisation de ces
problèmes. En imaginant ses solutions il va progressivement réaliser que le
non linéaire est à la fois un ingrédient essentiel dans les questions de sta-
bilité et de contrôle, et l’obstacle principal à ses analyses mathématiques.

23 Premier laboratoire de recherche créé au sein du département de la Marine amé-
ricaine, en 1923.
24 Le DTMB est un bassin de test pour la conception des navires de la Marine améri-
caine (aujourd’hui, il s’appelle : Carderock Division, Naval Surface Warfare Center).
Pour une histoire de cette gigantesque infrastructure, voir [Carlisle 1998].
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La situation de Minorsky est assez paradoxale : il est à la fois entouré,
écouté, mais en réalité très peu d’ingénieurs sont à même de le suivre dans
ces travaux théoriques aux Etats-Unis, dans les années 1930 comme, déjà,
en 1922. Minorsky va donc chercher et trouver ailleurs des réponses à cette
problématique. Et il va innover sur deux tableaux : les mathématiques pour
la théorie du contrôle (à travers les mathématiques des équations diffé-
rentielles non linéaires) et les procédés de calcul adaptés à ces problèmes.
D’ingénieur de la Marine, il se mue en chercheur-ingénieur, féru de ma-
thématiques, entre 1923 et la fin de la Seconde Guerre mondiale.

Pour comprendre ce cheminement, il faut suivre ses travaux et les re-
contextualiser systématiquement, en indiquant où il a puisé ses ressources
pour l’analyse théorique. On montrera ainsi également comment il a joué
un rôle de passeur d’un côté de l’Atlantique (Europe et URSS) à l’autre,
les Etats-Unis, sur fond de migration scientifique des années 1930.

3.1. 1927–1937 : Les oscillations non linéaires en Europe et en URSS

La première expérience et formation de Minorsky, le noyau de sa
culture technique et mathématique, c’est celle de Saint-Pétersbourg, nous
l’avons vu. Tout au long de sa vie, Minorsky est en formation, grâce à des
voyages réguliers en Europe notamment, durant lesquels il a à cœur de
se perfectionner en mathématique et en physique. Son plus long séjour
est celui de son année sabbatique (1927–1928) pendant laquelle il choisit
d’aller au contact des meilleurs physiciens de son temps. Il trouvera à Göt-
tingen, chez Richard Courant (1888–1972) et Max Born (1882–1970), des
personnalités scientifiques marquantes, aux enseignements de physique
mathématique de premier plan. Il a des contacts en France également, qui
aboutiront à un début de thèse, avortée, avec Paul Langevin (sur l’année
1933–34). Minorsky n’est pas un ingénieur naval comme les autres, il a
également été chercheur en physique25.

Ces voyages sont pour Minorsky l’occasion également de s’acclimater
aux nouveautés physiques et mathématiques de la théorie des oscillations
non linéaires en train de se construire en Europe et URSS : c’est précisé-
ment avec ces nouvelles théories, dans ce nouveau cadre théorique géné-
ral, qu’il poursuivra ses travaux sur la stabilité et le contrôle.

25 Ses contributions sont nombreuses, mais restent mineures. Nous renvoyons à la
liste des publications, éditées par exemple dans [Flügge-Lotz 1971]. Signalons simple-
ment qu’il touche à l’électromagnétisme, l’électronique, l’automatique, l’aéronau-
tique, etc., autant de domaines à la frontière de la physique et des sciences pour l’in-
génieur.
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De l’historiographie, il se dégage deux points importants26. D’une part
l’analyse des systèmes oscillants non linéaires, avant 1930, repose sur une
base mathématique et technique plutôt hétérogène. D’autre part, ce sont
les efforts de l’école russe, autour d’Alexander Andronov (1901–1952)
dès 1928–1929, qui permettront de construire un ensemble théorique
assuré, et reposant sur les travaux d’Henri Poincaré sur les équations
différentielles, plus exactement ses « Mémoires sur les courbes définies
par une équation différentielle » (1881–1886) et ses célèbres Méthodes
nouvelles de la Mécanique céleste (1892–1899)27. Cette base est complétée
par le traité de Lyapounov sur la stabilité, de 1892.

Les travaux de Poincaré et Lyapounov datent de plusieurs décennies
lorsqu’ils reviennent en jeu sur la question des oscillations non linéaires :
pourquoi porte-t-on un intérêt renouvelé à ces questions et ces travaux
vers 1930 ? Parce que de nombreux champs de la technique butent sur
des problèmes d’oscillations non linéaires et que le rapprochement entre
ces divers domaines et les mathématiques adéquates n’est pas réalisé avant
les années 193028. En effet, la technique voit au xx

e siècle de nouveaux
systèmes émerger, dans lesquels les non linéarités sont essentielles. Le
premier d’entre eux (pour son importance, non pour des raisons de chro-
nologie) est la télégraphie sans fil (TSF). Les ingénieurs cherchent des
systèmes pour entretenir des oscillations, selon des fréquences fixées et
stables, pour l’émission et la réception radio. L’électrotechnique, la méca-
nique et la TSF (puis la radiotechnique) apportent leur lot de problèmes
non linéaires, de stabilisation et de contrôle. Les questions de la marine
ne sont en fait qu’une partie des problèmes non linéaires, Minorsky l’a
appris très tôt : il a déjà connaissance en 1922 des travaux de Blondel sur
les oscillations entretenues, ce qui montre qu’il a perçu la transversalité
des questions d’oscillations non linéaires dès ce moment-là.

Même si Poincaré lui-même avait ouvert la voie en 1908, en utilisant ses
propres théories pour l’étude des oscillations pour la TSF29, il faudra at-
tendre 1928 pour que des ingénieurs-mathématiciens et physiciens russes
retrouvent dans les mathématiques de Poincaré une clé pour l’analyse des

26 [Aubin & Dahan 2002], [Dahan 2004a ;b], [Petitgirard 2004], [Ginoux 2011].
27 Voir bibliographie.
28 Dans ce qui suit, nous reprenons en grande partie l’historiographie sur le sujet,
[Aubin 1998] (pour une analyse socio-historique), [Pechenkin 2002] et [Petitgirard
2004] (pour une analyse plus détaillée des concepts et théories en jeu).
29 Voir [Ginoux & Petitgirard 2010].
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comportements oscillatoires non linéaires30. En effet l’étude des oscilla-
tions, jusqu’au début du xx

e siècle, opère dans un cadre hérité de l’ana-
lyse harmonique. Les analyses de type Fourier ont été transcrites pour la
théorie physique et pour l’ingénieur par Lord Rayleigh dans l’ouvrage de
référence Theory of sound [1877]. Seul le domaine de la mécanique céleste
offrait des problèmes non linéaires qui ont attiré et stimulé les mathéma-
ticiens : leur étude nécessitait l’extension des développements en série de
type Fourier. Les mathématiciens du xix

e siècle, dont Poincaré avec ses Mé-
thodes nouvelles, ont apporté de nombreuses contributions à ces questions
de dynamique, en particulier sur le problème des trois corps et la stabilité
du système solaire.

D’une certaine manière, l’histoire de la théorie des oscillations non li-
néaires est la reconnaissance claire de l’inadéquation des méthodes ma-
thématiques préexistantes qui forment le bagage délivré aux ingénieurs
depuis le xix

e siècle. Un problème d’oscillation non linéaire, qu’il relève
de la mécanique céleste ou de la TSF, ne peut se « résoudre » par la dé-
composition en modes de Fourier indépendants. On pourrait y voir une
limite à une certaine forme de réductionnisme, car désormais l’analyse du
système doit se faire globalement : cela implique un changement de mé-
thode et un changement dans les méthodes mathématiques pour l’analyse
des équations différentielles.

À partir de 1928, Andronov, sous la direction de son mentor Leonid
Mandelstam (1879–1944), et avec de nombreux collègues comme Alexan-
der Vitt, Semen Chaikin, Nikolaı̈ Papalexi, vont faire émerger une théorie
des oscillations non linéaires, applicables aux nouveaux problèmes de
la technique31 : mécanique, électrotechnique, électronique, stabilité et
contrôle de tout type de systèmes, biologie des populations, etc. Un autre
groupe à Kiev, autour de Nicolai Krylov32 et Nicolai Bogoliubov, perfec-
tionne également ces méthodes mathématiques. Ces travaux, en pointe
à ce moment-là, se font connaı̂tre en Europe occidentale par l’intermé-
diaire de notes (en français) à l’Académie des sciences en France33, et à
travers différentes rencontres, colloques et séminaires.

30 Il s’agit bien de 1928, et non 1929 comme on le lit habituellement dans l’histo-
riographie, car la note originale en russe d’Andronov date d’Août 1928.
31 Pour des détails et une vision plus complète de cette histoire nous renvoyons aux
travaux récents de Ginoux [2011], ainsi qu’à Dahan [2001].
32 Il n’y a aucun lien de parenté avec A. Krylov, l’ingénieur de la marine, précédem-
ment cité.
33 Notamment les deux notes remarquables d’Andronov [Andronov 1929] et d’An-
dronov et Witt, [Andronov & Vitt 1930].
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La première réunion impliquant les chercheurs soviétiques, hors
d’URSS, a lieu en France en janvier 1933, sans faire germer de nouvelles
perspectives à l’Ouest semble-t-il [Ginoux 2012]. Les années suivantes
sont marquées par le repliement à l’Est, sous Staline, laissant filtrer peu
d’informations après 1936. L’ouvrage majeur Théorie des oscillations d’An-
dronov, Chaikin et Witt est publié en 1937, en russe uniquement. Au
total, peu de chercheurs sont investis, hors d’URSS, sur cette thématique
de la théorie des oscillations non linéaires, aussi appelée « théorie des
auto-oscillations » et « mécanique non linéaire » par l’école russe et par
celle de Kiev. Les autres sont des ingénieurs ou des physiciens, dont le
niveau en mathématiques est largement supérieur à l’ingénieur « moyen »
et qui rappellent le parcours de Minorsky. Les travaux de référence, cités y
compris en URSS, sont produits par le physicien néerlandais Balthasar van
der Pol (1889–1959), l’ingénieur des Mines Alfred Liénard (1869–1958),
l’ingénieur Philippe Le Corbeiller (1891–1980), le mécanicien (au sens
des mathématiques) Jules Haag (1882–1953)34.

Ce lot de contributions soviétiques a pour conséquence l’introduc-
tion de nouveaux concepts dans l’analyse des systèmes oscillants, qui
vise à caractériser le portrait de phase de l’oscillateur en question, ses
solutions périodiques et quasi-périodiques, sa stabilité. Ces nouveaux
concepts, hérités de Poincaré, s’appellent : points singuliers (col, nœud,
centre, foyer), cycles limites, bifurcation, exposants caractéristiques pour
l’analyse de la stabilité des solutions, etc. La théorie des oscillations non
linéaires regroupe une analyse géométrique-qualitative (dans l’espace des
phases) et des développements quantitatifs sur les solutions des équations,
directement repris de Poincaré.

L’ambition de Mandelstam, Andronov et leurs collègues est de mettre
fin aux « bricolages » mathématiques, très élaborés déjà dans les années
1920, pour définir un cadre général, rigoureux, à l’analyse des oscillations
non linéaires.

3.2. Agir pour la Dynamique aux Etats-Unis

Minorsky se nourrit de tous ces éléments, d’autant plus qu’il est en
France au bon moment, qu’il est francophone (son épouse Madeleine
est française) et que Paris est un point de rencontre et de discussion

34 Cette liste n’est en rien exhaustive. Il faudrait également mentionner les travaux
sur les solutions « quasi-périodiques », d’Ernest Esclangon (1876–1954) et de Pierre
Fatou (1878–1929), les travaux sur la synchronisation de fréquence, la démultiplica-
tion de fréquence, etc.
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avancé hors de Russie et d’Ukraine35. Nous avons signalé que la première
conférence « internationale » sur le sujet des oscillations non linéaires se
tient du 28 au 30 janvier 1933 à Paris, à l’Institut Henri Poincaré. Les deux
instigateurs de cette réunion sont l’ingénieur néerlandais Balthazar van
der Pol et l’ingénieur russe Nikolaı̈ Papaleksi, collaborateur d’Andronov.
Même si les circonstances n’ont pas permis de rassembler tous les spécia-
listes du moment, on trouve parmi les participants un certain nombre de
français : Alfred Liénard, Elie et Henri Cartan, Henri Abraham, Eugène
Bloch, Léon Brillouin et Yves Rocard. Voilà le signe que la communauté
française et européenne s’est emparée du sujet, autant pour organiser les
réflexions que pour participer aux travaux.

Minorsky est en contact avec les membres de cette communauté, mais
n’oublions pas, surtout, qu’il est d’origine russe, qu’il lit le russe, contraire-
ment à l’écrasante majorité des chercheurs d’Europe occidentale qui res-
teront à distance des textes en russe. C’est d’ailleurs ce qui explique qu’il
participera à la traduction en langue anglaise de ces ouvrages pendant la
Seconde Guerre mondiale.

Entre ces voyages, Minorsky va se faire l’apôtre de ces nouveautés au-
tant auprès des ingénieurs et des mathématiciens, que des autorités aca-
démiques et au sein de la Navy, outre-Atlantique. En tant qu’enseignant
au MIT en 1935, il fait probablement le premier cours sur le thème de la
dynamique « moderne » et des théories de la stabilité dans cette institu-
tion. Minorsky a une activité de sensibilisation très directe auprès des cher-
cheurs et ingénieurs qu’il côtoie et forme. Raison pour laquelle il publie
les traductions des ouvrages majeurs des chercheurs soviétiques en 1944,
sous forme de rapport du DTMB à destination de tous les chercheurs de la
marine américaine. Au total ce seront quatre rapports, qui seront ensuite
compilés et publiés sous le titre Introduction to non-linear mechanics en 1947,
cette fois-ci à destination de tous les universitaires.

Cette sensibilisation ne s’arrête pas aux frontières de ses contacts di-
rects. En 1936, il forme un projet plus ambitieux de rapprochement entre
l’enseignement supérieur et le département de la Navy. Les collabora-
tions entre ces deux mondes, avant la Seconde Guerre mondiale, sont
limitées, c’est l’expérience de la guerre qui les rapprochera : c’est toute
la démonstration de l’historien Harvey Sapolsky dans Science and the Navy
[1990]. Mais, sur la base de sa propre expérience, Minorsky se fait l’avocat

35 Voir [Ginoux 2012]. Signalons qu’aux Etats-Unis se trouve probablement le
meilleur spécialiste des théories de Poincaré, le mathématicien David Birkhoff (1884–
1944), mais il est concentré sur le développement mathématique des théories des sys-
tèmes dynamiques.
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de collaborations entre les universités, les Colleges et la Navy, dans un
mémorandum de 193636. La formation des ingénieurs, de leur niveau
en mathématique et en physique, est un point préoccupant pour lui. Il
regrette que ce qu’il appelle la « dynamique avancée » n’apparaisse pas
dans les cursus d’ingénieur, que la question de la stabilité, si importante
dans le domaine naval, soit délaissée. Il dresse aussi un plaidoyer pour
une formation théorique en « dynamique » pour les ingénieurs du pays37.

3.3. La stabilisation des navires

Sur la période 1922–1947, les principaux problèmes que Minorsky
aborde pour la Navy, outre celui de la stabilisation de la direction, sont
ceux du roulis et l’amortissement des petites oscillations des bâtiments.
Dans ces questions de stabilisation des navires, Minorsky voit émerger les
problèmes liées aux non linéarités. En se confrontant à chacun de ces
problèmes il comprendra que le non linéaire est à la fois essentiel dans les
questions de stabilité et contrôle, et un obstacle redoutable aux analyses
mathématiques.

Les outils mobilisés par Minorsky dans ces travaux sont de plusieurs
ordres : mathématiques des équations différentielles pour l’analyse théo-
rique, modèles réduits des systèmes de stabilisation permettant des études
expérimentales à échelle réduite, et des analogies de plusieurs natures,
entre domaines techniques. De manière assez générale dans les années
1920–1930, l’effort théorique concernant les oscillations non linéaires,
comme la diffusion de ces théories, repose sur l’utilisation courante des
analogies électro-mécaniques entre circuits électriques et systèmes méca-
niques, chez les ingénieurs et les physiciens38. Il existe une raison de fond

36 Il s’adresse aux autorités du Navy Departement, qui relaient le projet auprès du
National Research Council. Le rapport de Minorsky est transmis au président du Na-
tional Research Council, Robert A. Milikan : « Coordination of work of Universities
and Colleges for the purpose of advancement of scientific problems of the Navy », Pa-
pers of Robert Andrews Milikan — archives du California Institute of Technology.
37 Ibid. « These advanced problems of the Navy, generally, require a knowledge of
advanced Dynamics which, in general, does not appear on the Engineering curricula.
Strange as it may seem, but the advanced Dynamics is studied by the Physicists —
mainly in connection with the atomic problems — and not by the Engineers. » (p. 3).
Plus loin : « Another chapter of a still greater importance for practically all Naval pro-
blems, is the chapter on stability of dynamical systems. This chapter, in general, is en-
tirely omitted in the Engineering curricula. » (p. 4).
Sa préconisation : « Organizing a special graduate course at one of the leading Uni-
versities which would fill the gaps in the existing curricula. » (p. 4). Il est clair que
Minorsky s’appuie sur sa propre expérience.
38 Nous renvoyons à la thèse de Ginoux [2011].
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à ces analogies : les modèles de ces circuits et systèmes sont construits
avec des équations mathématiques semblables. De par sa formation et sa
pratique, Minorsky comprend et adhère aisément à cette transversalité,
à cette possibilité de passer d’un domaine technique à un autre, ce qui
lui permettra de mettre en œuvre des réponses neuves aux défis de la
Marine. Nous verrons également toute l’importance de ces analogies dans
ses réflexions sur les systèmes de calcul.

Pour rester concis dans la présentation, nous reprenons le fil rouge
donné par Minorsky dans son Introduction to non-linear mechanics [1947],
en indiquant ponctuellement les travaux antérieurs auxquels il est fait
référence. Nous ne donnons ici que les équations des systèmes étudiés,
de manière résumée, dans le but de montrer les difficultés de chaque
problème, à savoir la composante non linéaire dans la dynamique des
oscillations.

Après les travaux sur la stabilisation en direction, c’est la question
du roulis, et concrètement le développement de systèmes anti-roulis,
qui occupe Minorsky, à partir de 1930 environ. Construire un dispositif
anti-roulis efficace est un problème important de la construction navale,
d’autant plus que les bâtiments gagnent en taille et poids. Les théori-
ciens du début du xx

e siècle ont déjà proposé l’équation dite de Froude
pour décrire le roulis, ce qui constitue le point de départ des analyses de
Minorsky [1934].

Équations différentielles du roulis (Équation de Froude39)

Il s’agit des équations

I
d2�

dt2
+ B1

d�

dt
+ B2

�
d�

dt

�2
+ D � h(�) = 0

où � est l’angle du navire par rapport à la position d’équilibre verticale,
I est le moment d’inertie du navire, B1 et B2 les coefficients de Froude
(résistance au roulis), h(�) le bras de levier du couple redresseur, et D le
déplacement.

La composante non linéaire correspond au terme quadratique. Or l’ob-
servation expérimentale révèle qu’on ne peut pas négliger le terme en B2 :
impossible de réduire les équations à un système linéaire, sans perdre une
partie significative de la mécanique du roulis.

39 Ce modèle de roulis est une transposition du système appelé « pendule de
Froude », du nom de l’ingénieur et architecte naval britannique William Froude
(1810–1879). Le pendule de Froude est un système mécanique à friction, qui a la pro-
priété d’être « auto-oscillant ». La première analyse en ces termes est due à Strelkov
en 1933. Voir [Strelkov 1933].
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Dans la perspective de Minorsky, réaliser un système anti-roulis signifie
introduire du contrôle par l’intermédiaire des termes de Froude. Plusieurs
systèmes existent, ont été testés ou sont mis en service lorsque Minorsky
attaque ce problème. Le système recherché par Minorsky se distingue des
autres dans son souhait de développer un système de contrôle actif. Dans
un navire, son système de stabilisation repose sur des réservoirs appelés bal-
lasts, placés de part et d’autre du navire : une pompe assure le transfert de
l’eau d’un réservoir à un autre, de manière à compenser un basculement
du navire. Il s’agit de créer une boucle de rétroaction pour contrôler le
roulis du navire et le contrer en temps réel.

Les travaux de Minorsky combinent l’analyse mathématique des équa-
tions différentielles aux recherches expérimentales sur un modèle réduit
construit pour un « navire équivalent » à échelle réduite. Dans les analyses
mathématiques, il lui faut contourner les difficultés, et l’absence de théo-
rie générale des solutions de l’équation de Froude, en restant à un niveau
qualitatif. Cela n’est pas sans rappeler ses travaux de 1922, et Minorsky
convoque à nouveau le critère d’Hurwitz pour assurer les conditions de
stabilité théorique du système.

Oscillations parasites dans les systèmes de contrôle

Un des problèmes rencontrés dans le dispositif de contrôle actif vient
des effets parasites du système, en particulier ceux générés par la pompe
utilisée pour le transfert de liquide d’un ballast à l’autre : plus exactement,
selon l’angle de l’hélice de la pompe, il peut apparaı̂tre un « papillon-
nage », c’est-à-dire de petites vibrations dans le système, rendant moins
efficace le contrôle. Ces effets parasites sont caractérisés par l’équation :

J
d2�

dt2
�

"
(b� a1)� a3

�
d�

dt

�2# d�

dt
+ c� = 0

où J est le moment d’inertie du ballast (réservoir + conduit), a est le co-
efficient du couple exercé sur le ballast, b est le coefficient de friction, et
c est le coefficient de stabilité statique de l’eau du ballast.

En redimensionnant les paramètres de cette équation, elle se ramène à
une équation non linéaire connue, celle dite « de Van der Pol »40 :

d2x

dt2
� �(1� x2)

dx

dt
+ x = 0:

40 L’équation apparaît dans l’article de Balthazar van der Pol en 1920 [Van der Pol
1920]. Le nom de cette équation n’est pas fixé immédiatement, et Minorsky ne fait ré-
férence à l’équation sous ce nom « d’équation de van der Pol » qu’à partir des années
1940.



L’INGÉNIEUR NICOLAS MINORSKY (1885–1970) 195

Stabilité directionnelle d’un navire

Variation sur le thème des recherches de 1922, Minorsky prolonge ses
théories sur la stabilisation en direction pour étudier un problème parti-
culier, celui de l’écart du navire au mouvement en ligne droite, reposant
sur l’équation :

J
d2�

dt2
+ C0

d�

dt
� �(M0 �M1�

2) = 0

où J est le moment d’inertie (selon l’axe vertical passant par le centre
d’inertie), C est la résistance au virage, M le moment de la force de
« dérive », � l’angle de la déviation initiale.

Dans une première approximation, qui se veut conforme aux observa-
tions sur les navires réels, Minorsky considère les équations suivantes :

J
d2�

dt2
+ C

�
d�

dt

�
�M(�) = 0:

Dans tous les cas, M recèle la composante non linéaire.
À travers ces quelques exemples, on voit la diversité des problèmes ren-

contrés par Minorsky et leur complexité relative. La composante non li-
néaire ne peut pas être isolée, réduite ou éliminée. Elle est dictée par le
calibrage du dispositif, par les retours d’expérience de terrain. Ces pro-
blèmes ont un point commun en termes de modélisation : ils aboutissent
à des équations différentielles du second ordre, non linéaires et non inté-
grables analytiquement. Le problème vient du fait que, contrairement au
cas des équations linéaires, il n’existe pas de méthodes mathématiques gé-
nérales et efficaces pour résoudre ces équations.

En outre, même le calcul approché des solutions dans le cas non li-
néaire est difficile. Il faut faire appel à des développements en série qui
s’avèrent parfois compliqués, ou dont les propriétés de convergence ne
sont pas clairement établies. Par ailleurs, il n’existe pas de machine à cal-
culer adéquate au problème. Les ingénieurs et mathématiciens peuvent
utiliser les ressources du calcul graphique mais les procédés, aussi in-
génieux soient-ils, n’apportent laborieusement que des renseignements
partiels. Dans les recherches en aéronautique, il semble que la situation
soit proche. Bennett fait état des mêmes problèmes de théorisation et de
calcul dans la stabilisation et le pilotage automatique des avions :

A number of methods for improving control were considered, but attempts
were handicapped by the need for extensive numerical calculation for each
case considered. [...] Computational difficulties seem to have prevented deve-
lopment of an interest in the analysis of aircraft control systems. »
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« Application of theory was also inhibited by the problems of computation.
This was particularly evident in the area of aircraft control although if the pro-
blems had been considered particularly pressing the computations would have
been carried out. » [Bennett 1986, p. 146–148].

En 1922, rappelons que Minorsky était parvenu a contourner le pro-
blème en utilisant un résultat de Blondel qui justement permet de préciser
la stabilité du système sans intégrer l’équation : il s’agit de relations entre
les coefficients de l’équations différentielle. Mais ce ne pouvait être qu’une
solution ad hoc. Le défi est double et ne peut se satisfaire d’expédients aussi
simples que : caractériser la dynamique avec des équations linéaires et ré-
soudre ces équations. C’est en cherchant, et en innovant, sur le plan de
la théorie du contrôle (à travers les mathématiques des équations diffé-
rentielles non linéaires) et les procédés de calcul que Minorsky répond au
défi.

4. DE PASSAGE AU MIT : LES « ANALOGUES DYNAMIQUES »

Dans ses propres recherches sur les oscillations non linéaires, Minorsky
emprunte deux voies complémentaires : celle des mathématiques des
équations différentielles et celle du calcul analogique. L’une ne va pas
sans l’autre dans son esprit et dans ses réalisations. Les mathématiques
fixent le cadre général. Mais l’application directe des méthodes a une
contrepartie : cela donne lieu à des calculs très longs, fastidieux, frustrants
pour l’ingénieur. Minorsky conçoit alors des machines propres à faciliter
ce travail et à apporter des réponses adéquates à la problématique ma-
thématique. Ces machines se rangent dans la catégorie des calculateurs
analogiques, et il les baptise « Analogues dynamiques ». Analysons leurs
spécificités et les propositions de Minorsky.

4.1. Au Massachussets Institute of Technology

La genèse des « Analogues dynamiques » se fait dans un théâtre bien
particulier, le MIT. Et dans un épisode particulier de la vie de Minorsky
puisqu’il a déjà acquis une vision large des questions de dynamique non
linéaire. Minorsky est de passage au département d’ingénierie électrique
sur l’année universitaire 1934–1935 pour donner des cours d’« Advanced
dynamics ». Or l’ingénieur Vannevar Bush est à cette époque vice-président
du MIT et doyen de la faculté d’ingénierie (1932–1938). Lorsque Minorsky
se lance dans la conception de ses calculateurs, il est clair que l’inspiration
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vient de l’analyseur différentiel dont l’inventeur est précisément Bush, en
1931. Ce sera son premier soutien.

Concrètement, un seul système de calcul est complètement réalisé en
1935 au MIT, sous la direction de Minorsky. C.N. Henshaw, un étudiant à
la faculté, met en oeuvre le calcul des solutions de l’équation de Mathieu41.
Résultats limités, mais déjà instructifs, au point que Minorsky persévère
malgré les nombreuses autres responsabilités qui lui incomberont par la
suite.

En effet, les « Analogues dynamiques » sont un sujet sur lequel Minorsky
réfléchit à plusieurs reprises, mais faute de soutien après 1936, au sein de la
Marine, il n’aura plus l’occasion d’en construire. Ses préoccupations pour
les mathématiques et la théorisation dans les recherches navales font qu’il
établira un rapport sur ces « Analogues », au DTMB, en 1941. Mais ce n’est
qu’en 1947 qu’il revient de manière synthétique sur le sujet, dans un ar-
ticle général destiné à la communauté des ingénieurs, dans le Journal of the
Franklin Institute. C’est en quelque sorte le testament des « Analogues dy-
namiques ».

Il ne reste aujourd’hui aucune trace matérielle de ces instruments de
1936, malheureusement. Aucune photographie non plus, seulement des
schémas généraux qui apparaissent dans les diverses publications de Mi-
norsky sur le sujet.

4.2. Le principe de base

Dans le principe, Minorsky construit un système de calcul analogique,
s’inspirant des intégrateurs mécaniques connus tels celui de Lord Kelvin,
et bien sûr de Bush. Même si Minorsky ne le cite pas, il est possible qu’il
ait été également inspiré par les travaux de Krylov à Saint-Pétersbourg, qui,
parmi les tous premiers, avait mis en œuvre les idées de Kelvin pour un cal-
culateur (cf. partie 1 et [Trogemann et al. 2002, p. 13]). Pour reprendre
les termes de Minorsky : comment faire des calculs sur l’équation diffé-
rentielle d’un pendule ? En mesurant le mouvement du pendule. La me-
sure sur le système physique permet de donner des résultats de calcul sur

41 À part dans la correspondance de Minorsky, il est difficile de trouver des informa-
tions précises sur les participants au projet. Dans le President’s report issue du MIT Bulle-
tin de 1936, on trouve mention de deux collaborateurs : « Dr. Nicholas Minorsky, when
a member of the staff, suggested an electro-mechanical apparatus for the solution of
certain differential equations representing elastic damped vibration with a spring pa-
rameter varying with time. Such an apparatus has been successfully constructed and
tested by Dr. C. W. MacGregor and Mr. C. N. Henshaw ». Ce que nous avons pu réunir
de la correspondance de Minorsky n’apporte pas davantage de renseignements.
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l’équation. C’est l’inverse de la démarche habituelle qui consiste à prédire
le mouvement du pendule par le calcul42.

Minorsky généralise le procédé : pour une équation différentielle dont
on souhaite calculer les solutions, il faut trouver le « pendule » qui corres-
pond à ces équations, le faire osciller et mesurer. La trajectoire du pen-
dule physique est un analogue de la solution de l’équation différentielle,
un « Analogue dynamique ».

Minorsky se limite au cas des équations différentielles ordinaires, de de-
gré deux :

d2�

dt2
+ F1

d�

dt
+ F0� = 0; F0 et F1 dependant de t, �,

d�

dt
.

Minorsky propose le système pendulaire suivant : un anneau C (petite
bobine) connecté à un circuit électrique, placé dans le champ magnétique
H uniforme d’un solénoı̈de S plus grand et relié à un autre circuit. L’an-
neau est suspendu dans le champ magnétique, il oscille selon l’axe verti-
cal au gré des forces électromagnétiques : il « pendule »43. C’est un système
électromagnétique dérivé de l’électrodynamomètre. En relevant le mouve-
ment sur plaque photographique, on recueille les résultats de l’intégration
de l’équation différentielle régissant la rotation.

L’ingéniosité du dispositif réside dans la possibilité de moduler les cou-
rants i1 et i2 pour obtenir les F1 et F0 souhaitées, et donc intégrer des
équations différentielles à coefficients constants, périodiques en t, ou des
équations non linéaires, avec des fonctions F dépendant de �.

De la même manière que pour les analyseurs différentiels, il faut insérer
de l’information analytique (ici les courbes des fonctions F ). Dans le sys-
tème de Bush, l’opérateur s’en charge et introduit la courbe, à la main, en
suivant le contour de la fonction à intégrer. Pour introduire ses données,
Minorsky propose d’abord des « contours intégrants » sous forme d’un sys-
tème mécanique (1936), puis opte en 1947 pour une solution photoélec-
trique (qui est baptisée « photo-intégraphe »44).

Prenons un exemple. Le système est composé d’un cache K , muni
d’une ouverture A, en mouvement oscillant transversal (selon l’axe des x,

42 [Minorsky 1936, p. 787–88].
43 En première approximation, le couple exercé sur l’anneau est M = �i1i2 sin(�) �

�i1i2�. Le pendule a pour équation I � d
2�
dt2
+ k2 � � = 0. Notons que k2 = �i1i2 est une

constante, dans le cas où i1 et i2 sont stationnaires.
44 Minorsky s’inspire directement de la solution proposée par Truman S. Gray qui
a réalisé un intégraphe optique, grâce à des cellules photoélectriques (dans sa thèse
réalisée au MIT, sous la responsabilité de Bush, en 1930). [Gray 1931].
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Figure 2. Vue en coupe ([Minorsky 1947a, p. 135, fig. 1].)

Figure 3. Vue en dessus ([Minorsky 1947a, p. 135, fig. 2].)

voir figure), devant un flux lumineux abcd45 dans un canal à l’extrémité
duquel se place une cellule photoélectrique.

45 Figure 4, [Minorsky 1947a, p. 137].
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Le courant relevé au niveau de la cellule photoélectrique varie propor-
tionnellement à la surface occultée. Si le cache oscille sinusoı̈dalement le
courant sera sinusoı̈dal. Ce courant, répercuté dans le bobinage du grand
solénoı̈de du montage, produit un pendule dont l’équation est celle dite
de Mathieu :

d2�

dt2
+ (a+ b cos(wt)) � � = 0:

Pour introduire le terme F1 , facteur de la dérivée première, il est néces-
saire d’ajouter un couplage entre le contour et la vitesse de variation d�=dt.
En développant ainsi le pendule, en associant ces différents dispositifs, il
est possible de construire un analogue dynamique de tout type d’équation
différentielle du second ordre. Et en généralisant encore, un principe si-
milaire peut être imaginé pour les équations d’ordre plus élevé, c’est une
perspective donnée par Minorsky sans beaucoup de précisions46.

4.3. « Analogues dynamiques » vs. machines à calculer mécaniques

Minorsky est dans une démarche d’ingénieur qui conçoit une machine,
dans ses détails, mais aussi, simultanément, dans une réflexion épistémolo-
gique. Il analyse lui-même les limites et les avantages de son système, ainsi
que les différences avec les machines à calculer existantes. Première limi-
tation, la précision :

From the preceding it is sufficiently clear that the analogue on the one hand
and the mechanical machines on the other do not pursue the same objectives
and, for that reason, are not directly comparable. In the analogue each oscil-
lation gives a new integral curve so that if a parameter is varied between two
subsequent oscillations, a family of integral curves will be obtained very rapidly,
although presumably with a moderate accuracy of, say, on or two per cent, de-
pending on the degree of linearity of electronic circuits, accuracy of integration
by the photo-integraphs and similar factors of a more or less physical nature. A
mechanical computing machine, on the other hand, will produce an integral
curve slower but with a higher accuracy.47

Loin de constituer un défaut rédhibitoire, ce déficit de précision
n’obère pas les qualités principales de ces systèmes, qui sont de faire une
intégration que nous qualifierons de « semi-quantitative » de l’équation, et
surtout directement inspirée par les théories des équations différentielles
de Poincaré. Minorsky considère l’analogue d’abord comme machine à
explorer les courbes solutions d’une équation différentielle méconnue,

46 [Minorsky 1947a, p. 145].
47 La « machine mécanique » à laquelle Minorsky fait référence est l’analyseur dif-
férentiel de Bush. Ibid. p. 147.
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se plaçant dans une perspective d’analyse qualitative des équations, qu’il
considère complémentaire du travail quantitatif sur les solutions48.

En d’autres termes, il s’agit de dresser le portrait de phase de l’équa-
tion différentielle, point de départ de l’analyse de l’équation à travers les
courbes qu’elle définit. C’est d’ailleurs le titre du mémoire de Poincaré
fondateur de ces questions : « Sur les courbes définies par des équations
différentielles ». Dans cette perspective, pour Minorsky, c’est bien le rap-
port à la physique du « pendule » qui est déterminante. Doublement dé-
terminante même, puisqu’en restant proche de la physique il perd en pré-
cision, mais gagne en informations qualitatives sur les solutions.

In view of this certain mathematical concepts such as singular points, for ins-
tance, will appear naturally in the analogue as certain positions of equilibrium
(stable or unstable) whereas in mechanical computing machine their presence
will be ascertained only indirectly by the accumulation of points (in the differen-
tial analyzer) or figures (in an arithmetic computing machine) in a certain res-
tricted neighborhood of integration. The same consideration applies obviously
to similar critical conditions that may arise in a problem, such as the existence of
limit cycles, separatrices, branch points of equilibria, etc. Such a closer contact
with physics in problems which are of a physical origin may have some advan-
tages in grasping the real situation.49

La visualisation des solutions procurée par l’analogue dynamique est
double : le relevé de la trajectoire du pendule offre un tracé des solutions
de l’équation différentielle ; et il « suffit » même de regarder le pendule
osciller pour savoir s’il se positionne sur une position d’équilibre, sur un
mode d’oscillation stable, etc.

En substance, la machine de Bush n’utilise que des relations cinéma-
tiques, pas la dynamique inhérente à un phénomène physique donné.
En reprenant le terme de Minorsky, l’analyseur différentiel constitue un
« analogue cinématique ». Partant d’un système physique, dont on connaı̂t
les lois d’évolution, on peut tirer une équation différentielle régissant son
comportement. L’analyseur différentiel n’utilise que cette dernière don-
née et transforme cette donnée en des liaisons géométrico-mécaniques :
in fine, la cinématique de l’analyseur différentiel est analogue à la ci-
nématique du problème physique. L’« Analogue dynamique », partant
de la même équation différentielle, est un autre système physique, régit

48 Ibid., p. 147 : « Hence, in a totally unexplored problem in which the primary ques-
tion is to ascertain the general qualitative aspect of integral curves for all possible va-
lues of the parameter variation, or, possibly, for different form of the functions ap-
pearing as coefficients of the differential equation in question, the analogue will be
probably preferable to a mechanical machine. On the other hand, a mechanical ma-
chine will be of a decided advantage when an accurate quantitative result is desired. ».
49 Ibid. p. 148.
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par d’autres lois, mais dont la dynamique est l’analogue du système ini-
tial parce que les équations différentielles sont les mêmes. L’analyseur
différentiel « trahit » en quelque sorte la dynamique du système physique.

Soulignons que Minorsky a le souci de construire des machines et d’ob-
tenir des résultats adaptés à des questions de stabilité. En cela il s’appuie
sur ses connaissances mathématiques et il sait que les notions de points sin-
guliers, de cycles limites, de stabilité sont le produit non pas de la construc-
tion dans le détail d’une seule courbe intégrale, mais de l’analyse du por-
trait de phase : cela nécessite de connaı̂tre une famille étendue de courbes
solutions. Les « Analogues dynamiques » sont bien l’extension de sa pra-
tique d’ingénieur-mathématicien : celle d’un ingénieur qui a trouvé un
moyen de tirer des informations sur des équations différentielles analyti-
quement non-intégrables, celle d’un ingénieur dont la culture mathéma-
tique étendue, en pointe, l’autorise à innover sur le plan de la conception
d’un système de calcul.

Les « Analogues dynamiques » sont donc également le produit d’une
hybridation de cultures : celle du calcul analogique (celle de Bush au
MIT dans les années 1930), celle des mathématiques des équations
différentielles (qui a introduit de nouveaux concepts pour l’analyse
mathématique), celle du monde de l’ingénieur (avec ses demandes de
« résolution » d’équations qui paraissent analytiquement insolubles, « ré-
solution » qui est néanmoins indispensable, et un souci permanent du
perfectionnement technique des machines).

4.4. Des difficultés à l’abandon

Malgré ces perspectives et le soutien du MIT, malgré la persévérance
de Minorsky, ce projet de calculateur ne dépasse pas le stade du prototype
de 1935–1936. L’absence de documents, d’archives, empêche de détermi-
ner précisément le pourquoi de cet abandon. Nous devons nous conten-
ter d’un faisceau d’hypothèses, que nous passons en revue, et nous propo-
sons un éclairage par le contexte, et par la comparaison avec des projets
contemporains, ainsi que leurs écueils.

La question de la précision est une des raisons, certainement impor-
tante, de la durée de vie limitée du projet. Pour des ingénieurs et des physi-
ciens, la précision et les résultats quantitatifs, priment, alors que les « Ana-
logues dynamiques » ne sont certainement pas conçus pour cela. L’avan-
tage de l’analyse qualitative est relatif à une connaissance des mathéma-
tiques des équations différentielles. Or, nous l’avons souligné, Minorsky est
« avant-gardiste » sur ce terrain (dans le monde des ingénieurs). Au sein de
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la communauté des physiciens spécialistes des questions maritimes, il ne se
trouve que très peu de personnes à même de comprendre l’intérêt de ces
figures, portraits de phase et autres concepts « avancés ».

Avec son système, Minorsky produit une iconographie de la dynamique
du système, son portrait de phase et autant d’images des trajectoires so-
lutions de l’équation que nécessaire. Il est guidé par les théories « à la
Poincaré ». Minorsky dévoile l’arrangement des solutions entre elles, les
solutions périodiques, le comportement asymptotique. En bref, il pointe
sa loupe sur la stabilité du système, ce qui l’intéresse fondamentalement,
et apporte des arguments que l’on peut ranger dans la catégorie des in-
dices d’existence de tel ou tel comportement pour le système physique, et
qui doivent être renforcés par d’autres moyens (par exemple des calculs
d’exposants de Lyapounov).

Mais plutôt que cette carte globale, les ingénieurs attendent « la » solu-
tion, des résultats « tangibles », le bon paramétrage, la configuration adé-
quate. Toute autre information suscitera des interrogations quant à leur
intérêt et pertinence. Ce décalage est pleinement assumé par Minorsky, un
ingénieur par ailleurs parfaitement conscient de ces attentes.

L’analyse épistémologique nécessite de distinguer trois niveaux et leurs
relations : le système matériel, physique, les concepts mathématiques et
les images. Ces images sont produites par la machine, mais le sens de ces
images n’est pas évident : quels rapports entre les images du portrait de
phase de l’oscillateur et les observables du système physique ? Les images
ont du sens parce qu’elles se rapportent aux solutions d’une équation
différentielle, elles font sens par l’intermédiaire des mathématiques de
l’équation différentielle, mais elles sont produites par la machine, et uni-
quement grâce à la machine (il n’y pas d’intervention, de correction au
cours du calcul).

L’analogue dynamique correspond au couplage réussi entre ces trois ni-
veaux : il est l’intermédiaire nécessaire pour produire les images à partir
de la physique de l’oscillateur. C’est une machine (physique) qui repose
sur une analogie non pas entre différents systèmes physiques mais entre
solutions de l’équation et dynamique du système physique, et qui produit
des images (approchées) des solutions

Les images produites par Minorsky permettent de visualiser de manière
approchée la dynamique du système physique écrit sous forme d’équations
différentielles. Elles ne font sens que dans le cadre des théories de Poin-
caré. Et on comprend alors pourquoi Minorsky ne s’embarrasse pas de la
précision outre mesure : des images plus précises apporteront-elles plus de
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force à l’argumentation ? Voilà qui est susceptible de dérouter l’ingénieur
qui n’aurait pas bien analysé la situation et le parti pris de Minorsky.

Il reste néanmoins la force de l’argument physique, propre à convaincre
physiciens et ingénieurs : la stabilité des solutions de l’équation différen-
tielle, d’une certaine manière, se constate en observant l’évolution du pen-
dule ; si les oscillations du pendule se stabilisent, elles peuvent s’interpréter
comme un signe de l’existence d’une solution stable à l’équation différen-
tielle. L’équation différentielle est là encore l’intermédiaire indispensable
dans l’argumentation. Mais la traduction en termes physiques ne suscite
pas l’intérêt des mathématiciens qui ont plutôt tendance à porter un re-
gard suspect sur ce type d’argument.

D’autres raisons plus prosaı̈ques s’ajoutent à cela. Minorsky propose par
exemple de construire des analogues pour l’équation de Schrödinger, qui
est l’équation fondamentale pour les recherches en physique atomique.
C’est un des objectifs du physicien Douglas Hartree à Manchester, qui
travaille sur une machine inspirée de l’analyseur différentiel de Bush50.
Sur ce terrain, l’analogue dynamique est en concurrence directe avec une
machine qui est déjà utilisée, et sa faible précision est un handicap. Les
mots d’Hartree montrent l’obstacle à franchir pour convaincre les physi-
ciens de l’utilité d’une démarche plus qualitative sur ce type de problème,
alors qu’ils privilégient la solution offerte par l’analyseur différentiel51. En
s’éloignant de son terrain des oscillations non linéaires, Minorsky imagine
peut-être un écho favorable du côté des physiciens, alors qu’il se heurte
en fait à des conceptions beaucoup plus fortes qu’il ne soupçonne : et il
saborde lui-même son projet.

Ces systèmes, simples sur le papier et peu coûteux, sont, malgré tout, dé-
licats à construire et à mettre en oeuvre. Il est nécessaire de posséder une
bonne électronique, car les signaux enregistrés sont très faibles : or l’am-
plification par des tubes électroniques introduit des distorsions, du fait des
non linéarités propres à la physique des tubes52.

50 [Froese Fischer 2003], [Durand-Richard 2006].
51 [Hartree 1938, p. 342] : « Differential equations which have no formal solution, or
none convenient for numerical evaluation, are of common occurrence in a very wide
range of applications of mathematics to problems both of pure and applied science
[...] and in the contexts in which they arise, it is often not only the qualitative form of
the solution, but actual quantitative numerical values that are wanted. ».
52 Minorsky reconnaît d’emblée le problème en 1936 : « Le degré de précision avec
lequel le pendule tracera les courbes intégrales dépendra du choix judicieux de ces
différents paramètres. Parmi ces conditions, les plus importantes sont : 1o réduction
autant que possible du frottement dans le système mobile ; 2o réalisation des systèmes
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Enfin, dans la course aux calculateurs après 1947, qui oppose analo-
gique et numérique, même l’analyseur différentiel perdra sa place de
leader. Le développement considérable des calculateurs numériques, des
ordinateurs, scellera le sort des calculateurs analogiques.

En d’autres termes, les raisons de l’avortement sont multiples. Fonda-
mentalement, elles sont épistémologiques et sociologiques : la hiérarchie
entre résultats quantitatifs et qualitatifs est très ancrée dans la majorité des
esprits de cette époque, et les mathématiques susceptibles de rééquilibrer
ces rapports sont largement ignorées de ces mêmes personnes. Ces raisons
priment probablement l’aspect plus purement technique, puisqu’aucun
projet n’est venu relayer la construction du prototype et améliorer ces
« Analogues dynamiques »53. Et Minorsky, dont le réseau est constitué dans
le milieu des recherches pour la Marine, n’a pas les moyens de convaincre
ni les mathématiciens, ni les physiciens, de la pertinence de son approche.

5. DE L’EFFORT DE GUERRE À LA RETRAITE ACTIVE

On a saisi qu’avant la Seconde Guerre mondiale, Minorsky n’était pas
parvenu à faire valoir son projet de formation avancée en Dynamique dans
le tissu universitaire ni militaire. Il restait assez peu entendu concernant la
question des théories des oscillations non linéaires aux Etats-Unis, le cœur
de la recherche sur le sujet se situant en URSS et en Europe, notamment
la France. Deux facteurs vont changer la donne. Un premier, qui est une
dynamique entamée dans les années 1930, est celle de l’arrivée de scienti-
fiques européens aux Etats-Unis ; le second est la mobilisation scientifique
dans le contexte de la guerre. Deux scientifiques, venant d’Europe et par-
ticipants actifs à cette mobilisation, jouent un rôle déterminant dans l’évo-
lution de la trajectoire de Minorsky : Theodore von Karman (1881–1963)
et Solomon Lefschetz (1884–1972).

En 1940, von Karman, hydrodynamicien très influent, publie le texte
« The engineer grapples with non linear problems »54. Il dit : « cette confé-
rence vise à améliorer la convergence des points de vue des mathématiques

d’amplification à caractéristiques linéaires ; on appliquera dans ce but des précau-
tions connues dans la téléphonie à longue distance [...] », [Minorsky 1936, p. 793].
53 Voir le chapitre 8 de [Petitgirard 2004], et p. 481 en particulier.
54 Pour être tout à fait précis c’est le texte d’une conférence donnée le 27 décembre
1939 à l’occasion de la quinzième « Josiah Willard Gibbs Lecture », à Colombus, Ohio,
sous les auspices de l’American Mathematical Society, et avec l’AAAS (American As-
sociation for the Advancement of Science). La publication aura un impact largement
supérieur à cette conférence. [Von Karman 1940].
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et de l’ingénierie »55. Von Karman s’adresse directement aux mathémati-
ciens pour les alerter sur les besoins des ingénieurs. Le premier exemple
donné par von Karman est celui des oscillations non linéaires, dressant une
synthèse des principaux travaux européens en la matière56. L’autre facette
de la problématique présentée en filigrane est celle de l’aéronautique, en
plein essor et si déterminant dans le conflit mondial.

Le texte résonne avec les propos de Minorsky qui souhaitait, dès 1936,
inciter les ingénieurs à se tourner vers les nouveaux problèmes non li-
néaires. Il souhaitait organiser en conséquence des projets de recherche
et de formation. Minorsky est en contact direct avec von Karman, il l’invite
plusieurs fois au DTMB, échange sur ses projets. Sur cette base plus so-
lide, Minorsky est lancé dans la diffusion des théories des oscillations non
linéaires. Il trouvera des relais, comme celui, décisif, du mathématicien
Solomon Lefschetz qui lancera une dynamique de recherche fructueuse
à Princeton.

À travers ces trois personnages, on saisit tout l’apport de la vague d’émi-
gration européenne : Minorsky, né russe, formé partiellement en France,
émigrant aux Etats-Unis en 1918 ; Lefshetz, d’origine russe également,
formé comme ingénieur à l’École centrale des arts et manufactures, en
France, émigrant aux Etats-Unis en 1905 ([Dahan 1994]) ; von Karman,
né à Budapest, formé à l’aéronautique à Göttingen, émigrant en 1930
pour travailler au CalTech.

L’effort de guerre au Etats-Unis est le catalyseur de l’effort de traduction
assuré conjointement par Minorsky et Lefshetz, pressentant l’urgence de
porter la connaissance des théories des oscillations non linéaires au public
des ingénieurs, mathématiciens, physiciens, etc. Les travaux de Lefshetz57

55 « This lecture is intended as an effort to improve the convergence between the
viewpoints of mathematics and engineering » [Von Karman 1940, p. 615]. Et il conti-
nue ainsi : « Engineering mathematics is generally considered as a collection of ma-
thematical methods adapted for the solution of relatively simple problems. These pro-
blems often might require lengthy numerical calculations or graphical constructions,
but supposedly can be worked out without the use of advanced methods of mathema-
tical analysis. This description was perhaps correct some decades ago ; today a large
group of scientific workers is engaged in applying various methods of classical and mo-
dern analysis to problems in electrical, civil, mechanical, aeronautical and also che-
mical engineering. », [Von Karman 1940, p. 615–20].
56 Citant Van der Pol, Andronov, Krylov et Bogoliubov, Haag, Liénard, et bien-sûr
Poincaré, dont les méthodes constituent la base de l’analyse des oscillations entrete-
nues. Etant donné les relations entre ces deux scientifiques, il est clair que Minorsky a
contribué à renforcer la connaissance et les certitudes que von Karman a pu se forger
par ailleurs sur ces questions.
57 Pour toutes les précisions, nous renvoyons à l’article très détaillé : [Dahan 1994].



L’INGÉNIEUR NICOLAS MINORSKY (1885–1970) 207

sur le sujet démarrent par son rapprochement, en 1943, avec l’US Navy, le
DTMB et Minorsky. Il se familiarise alors avec l’ensemble des théories du
non linéaire et la théorie du contrôle, s’appuyant sur sa longue expérience
de spécialiste de géométrie algébrique et topologie. Par la suite il n’aura de
cesse de développer la théorie des systèmes dynamiques et d’encourager
les mathématiciens à s’y appliquer.

Après-guerre, en 1946, Minorsky accepte un dernier poste académique,
à l’université de Stanford, au département « Engineering mechanics »,
tout en poursuivant ses travaux sur la stabilisation des navires. Puis il prend
sa retraite, en conservant une activité qui sera principalement théorique.
Avec son épouse française, cette partie de sa vie se déroule en grande par-
tie en Europe : Sud de la France, Florence et Nord de l’Italie. Il collabore
notamment avec un autre ingénieur devenu physicien et mathématicien,
Théodore Vogel, sur les problématiques de la physique du non linéaire
dans un laboratoire du CNRS à Marseille. Vogel développera ensuite son
propre groupe de « dynamique théorique »58.

En 1951, il est également l’un des instigateurs, aux côtés de Joseph Pé-
rès et van der Pol, du premier colloque international des vibrations non li-
néaires, organisé en France, sur l’Ile de Porquerolles59. Plus anecdotique,
néanmoins très significatif, c’est Minorsky qui prononce l’allocution à la
Société des Ingénieurs Civils, le 18 mai 1954, lors des manifestations or-
ganisées pour le centenaire de la naissance de Poincaré. Il est invité dans
une journée destinée à « rappeler l’influence que Henri Poincaré avait eue
sur les sciences de l’ingénieur ». Son intervention est intitulée : « Influence
d’Henri Poincaré sur l’évolution moderne de la théorie des oscillations
non linéaires »60. Il recevra, en 1955, le prix Montyon de l’Académie des
sciences.

58 [Petitgirard 2004] en particulier le chapitre 8.4.
59 Ce colloque est organisé sous l’égide de l’Union internationale de mécanique
théorique et appliquée, l’Union radioscientifique internationale et soutenu par le Mi-
nistère de l’Air français, ce qui témoigne du vif et large intérêt trouvé par ces ques-
tions après 1945. Cf. [Pérès 1953].
60 On trouve ce texte dans le volume 11 des « Œuvres complètes » de Poincaré : [Mi-
norsky 1956].
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6. CONCLUSION — MINORSKY, UN « INGÉNIEUR-SAVANT » ?

Si l’on cherche à faire un bilan des travaux de Minorsky, il faut cumu-
ler ses publications nombreuses (proche d’une centaine)61, ses résultats
effectifs sur la stabilisation de l’USS New Mexico et d’autres bâtiments de
la Marine des Etats-Unis et les productions suivantes :

– au moins 17 brevets, sur la période qui nous occupe ici, tous liés à des
systèmes de contrôle ou à un instrument de la chaı̂ne de contrôle ;

– des ouvrages de référence, les plus importants, au regard de l’histoire
de la science du non linéaire au xx

e siècle étant : Introduction to non-linear
mechanics [1947b], Nonlinear oscillations [1962], et, sorte de synthèse de son
œuvre au service de la théorie du contrôle : Theory of nonlinear control systems
[1969].

Ces trois ouvrages sont à l’image de son activité de passeur d’idées : tra-
ducteur entre le monde russophone et anglophone, passeur de frontières
entre la technique et les mathématiques, entre les ingénieurs, les physi-
ciens et les mathématiciens. Il est lui-même passé de l’ingénierie navale
à l’application des mathématiques, aux mathématiques appliquées, pour
revenir, toujours, à la construction des navires.

Lefschetz aux Etats-Unis, Vogel à Marseille, l’équipe réunie par Andro-
nov en URSS, tous partagent ce point commun avec Minorsky : ils ont
des parcours atypiques, ce sont des ingénieurs sortis du strict domaine
de la technique pour faire de la recherche en mathématiques, tout en
conservant leur intérêt fondamental pour l’application. Ils montrent
aussi que le domaine des mathématiques s’enrichit considérablement de
ces ouvertures sur le concret, par la conception d’instruments de calcul
et de visualisation tout particulièrement. En ce sens, Minorsky est un
« ingénieur-savant », dans le sens introduit par Grattan-Guinness [1993]
et Chatzis [2010]. Certes, il n’est pas élève de l’Ecole Polytechnique, mais
sa formation est faite d’un bon dosage de mathématiques, d’ingénierie
navale, et de pratique militaire, qui n’est pas sans rappeler la formation
polytechnicienne. Dans ses travaux, il allie des savoirs scientifiques et de
terrain, il a cette capacité à mobiliser les mathématiques des systèmes
dynamiques pour la question du contrôle et la stabilisation des navires.
C’est un ingénieur naval tirant des problèmes mathématiques ouverts
de la théorie du contrôle, construisant des calculateurs pour résoudre

61 Voir [Flügge-Lotz 1971] pour une liste (non exhaustive) de 84 publications, qui
ne compte pas les rapports produits pour le DTMB.
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les problèmes de systèmes dynamiques, pour visualiser les systèmes dyna-
miques. On pourrait le définir comme « Ingénieur-mathématicien », qui
en un sens serait un « ingénieur-savant », spécialisé car il ouvre un dia-
logue direct et spécifique entre ingénierie et mathématiques des systèmes
dynamiques. Les « ingénieur-savants » ont désigné le réseau des polytech-
niciens impliqués dans la pratique de terrain, sur la période 1820–1860.
Minorsky serait un « ingénieur-savant » plus que tardif en ce sens, il reste
néanmoins pertinent de le ranger dans une catégorie similaire.

En tout cas, l’étude approfondie, et plus générale, de ces parcours d’in-
génieur, de leurs pratiques et de leurs épistémologies, ouvre des perspec-
tives pour l’histoire des mathématiques au xx

e siècle, pour l’histoire des
équations différentielles et du calcul en particulier. Et il devient mainte-
nant essentiel pour construire l’histoire des oscillations non linéaires de
prendre en considération un spectre très large d’activités des ingénieurs.

Second point important, la contrainte qui les a poussés hors de leur do-
maine initial, ce sont les phénomènes non linéaires. À la fois obstacle à
la compréhension pour des ingénieurs formés à manipuler des concepts
et des méthodes mathématiques pour le linéaire, et difficulté théorique
irréductible, le non linéaire impose d’innover. Et, dans les années 1930,
cela suppose de posséder un bagage mathématique de pointe. En d’autres
termes, dans le domaine de Minorsky, pas d’innovation sans culture ma-
thématique étendue. Minorsky n’est pas loin de l’exprimer lui-même, dans
son rapport de 1941 au DTMB, dans lequel il aborde la question de la place
de la théorie dans l’ingénierie navale, dépassant donc la seule question du
non linéaire :

A mathematical physicist who is confronted with a problem of this kind finds
himself from the very beginning of his work in a rather embarrassing situation.
The definiteness of problems to which he grew accustomed in his academic
work does not exist in these naval problems ; a considerable amount of data
which he would like to have in order to start his differential equations is not
available, and he cannot wait until it will be available. It is necessary to start an
approximate theory, to form a provisional hypothesis in the hope that in this
manner he will reach at least a first approximation rather than a wrong guess.
A broad mathematical training helps considerably in such a case ; (...)62

Cela fait écho à son mémorandum de 1936, que nous voyons comme un
plaidoyer pour une formation et l’extension de la culture scientifique, ma-
thématique en particulier, de tous les ingénieurs aux Etats-Unis. Minorsky
privilégiait une action pédagogique d’ampleur en termes quantitatifs et

62 « The Value of Mathematics in Research at the David W. Taylor Model Basin », De-
cember 1941. 7 p., Rapport R-48. Archives du DTMB (maintenant appelé : Carderock
Division, Naval Surface Warfare Center).
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géographiques. Aujourd’hui, et au regard du parcours de Minorsky, il faut
souligner, en outre, l’importance de la permanence, de la persévérance
dans le temps d’une telle action. Une culture scientifique et technique ne
se construit pas du jour au lendemain, elle est le fruit de la « longue du-
rée ». Minorsky a hérité des mathématiques russes, de l’université de Saint-
Pétersbourg, de son Académie navale. Il a su renouveler cet héritage et
l’hybrider avec le calcul analogique tel qu’il est conçu au MIT. C’est ce qui
inspire les groupes qui l’ont suivi, et qui développent leur propre voie de
recherche en composant avec cet héritage. Notons aussi qu’un Départe-
ment de Mathématiques Appliquées est créée au DTMB en 1952, et que
Minorsky en est probablement un des inspirateurs [Richstone 1961].

Même s’il n’est pas un historien chevronné, Minorsky est sensible
à l’épaisseur historique propre à son domaine de recherche. Fruit de
sa lecture de l’histoire des oscillations non linéaires (en particulier sur
l’équation de van der Pol) et de son expérience sur les « Analogues dy-
namiques », Minorsky avance ses conclusions épistémologiques sur les
rapports entre mathématiciens et ingénieurs :

It cannot be denied that mathematics, at least in the early stages of its deve-
lopment, received a beneficial stimulus from some kind of physical « images ».
[...] Viewed from this standpoint a systematic study of analogues may not only
bridge the gaps separating the mathematician and the engineer but may, in
some cases, orient a purely analytical argument as well. It is recalled that the
work of Poincaré has established that periodic solutions of non-linear differen-
tial equations may exist for small values of the parameter � in equation [de
Van der Pol]. There was no analytical certainty whatever as to the existence of
such solutions for large values of � until a physical « image », the electron tube
oscillator, in hands of Van der Pol has shown that such solutions may exist even
in this case. This, in turn, oriented the analysis along somewhat new lines [...]
An analogue capable of producing an unlimited number of such « images »
may be just as useful in a purely mathematical work as in applied science, at
least as an initial stimulus for the mathematical argument. [Minorsky 1947a,
p. 149].

Les « images » sont convoquées à double titre : les « Analogues dyna-
miques » sont des images physiques qui incarnent des concepts mathéma-
tiques ; l’iconographie générée par calculs devient un support pour la pen-
sée mathématique et pour faire germer des idées nouvelles. C’est un sti-
mulant pour la pensée mathématique. Et Minorsky souligne plus généra-
lement le caractère fructueux des échanges possibles, et nécessaires à ses
yeux, entre mathématiciens et ingénieurs :

In recent times the gap between the mathematician and the engineer grew
wider. Not every discovery in mathematics is immediately useful to the engineer,
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and, conversely, not every problem of interest to the engineer can be answe-
red by the mathematician. [...] On the other hand, whenever contacts between
mathematics and applied science occur, they are generally useful to both. [Mi-
norsky 1947a, p. 148].

John von Neumann aurait volontiers souscrit à l’ensemble de ces
termes, lui qui, en 1945–1947, livre ses réflexions sur la pratique des
mathématiques :

I think that it is a relatively good approximation to truth [...] that mathema-
tical ideas originate in empirics, although the genealogy is sometimes long and
obscure. But, once they are so conceived, the subject begins to live a peculiar life
of its own and is better compared to a creative one, governed by almost entirely
aesthetic motivations [...] As a mathematical discipline travels far from its empi-
rical source, or still more, if it is a second and third generation only indirectly
inspired by ideas coming from « reality » it is beset with very grave dangers. [...]
In other words, at a great distance from its empirical source, or after much « abs-
tract » inbreeding, a mathematical subject is in danger of degeneration. [...]

In any event, whenever this stage is reached, the only remedy seems to me to
be the rejuvenating return to the source : the re-injection of more or less directly
empirical ideas. I am convinced that this was a necessary condition to conserve
the freshness and the vitality of the subject and that this will remain equally true
in the future. [Von Neumann 1947, p. 196].

Tout ceci resitue Minorsky dans une épistémologie que nous pourrions
qualifiée de « triomphante » après-guerre, celle des « machines mathéma-
tiques » et des « expériences mathématiques ». Ce qui constitue le cadre
épistémologique du développement des mathématiques appliquées, de
l’ordinateur, de la simulation informatique, dont von Neumann est un
des plus éminents avocats.

Les « Analogues dynamiques » ne sont pas qu’une performance tech-
nique, ni un projet pétri d’illusions. De la même manière que l’analyseur
différentiel de Bush a été un jalon de l’avènement de l’ère informatique,
il faut placer les « Analogues dynamiques » de Minorsky dans cette pers-
pective. La différence est une question de portée et d’influence, ce qui est
loin d’être négligeable : Minorsky reste dans l’ombre pendant que l’ana-
lyseur de Bush est en pleine lumière ; Norbert Wiener, Claude Shannon,
John Von Neumann travaillent de conserve, analysant les limites de la ma-
chine de Bush, dressant les perspectives pour les machines à venir, loin de
Minorsky, sans avoir même connaissance de ses réflexions. De son côté, Ni-
colas Minorsky est resté longtemps un « inconnu » de l’histoire des sciences
et des techniques.
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BIOGRAPHIE DE N. MINORSKY (EN QUELQUES DATES)

Né le 23 septembre 1885 à Korcheva (Russie).
1903–1914 : Formation d’ingénieur naval à l’Ecole Navale de Saint-

Pétersbourg puis à l’Ecole Polytechnique impériale.
1914–17 : Lieutenant dans la Marine Russe.
Juin 1918 : émigre aux Etats-Unis.
1918–22 : Assistant de P.S. Steinmetz aux Laboratoires de Recherche de

General Electric (New York).
1922–23 : Installation et test du système pilotage automatique sur l’USS

New Mexico.
1923–34 : Professeur à l’Université de Pennsylvanie.
1934–1940 : Travaux pour l’US Navy (Naval Research Laboratory).
1934–35 : Chercheur au département d’« Electrical engineering » au

MIT.
1940–1946 : Conseiller spécial du Directeur du David Taylor Model Ba-

sin (US Navy).
1947 : Publication de l’ouvrage « Introduction to nonlinear mecha-

nics ».
1950 : « Retraite » et missions pour l’ONR (Office of Naval Research, US

Navy) en Europe.
1962 : Publication de « Nonlinear oscillations ».
1969 : Publication de l’ouvrage « Theory of nonlinear control systems ».
1970 : Minorsky meurt le 31 Juillet 1970 à Florence (Italie).
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[1994] La renaissance des systèmes dynamiques aux Etats-Unis après la

deuxième guerre mondiale : l’action de Solomon Lefschetz I, Supple-
mento ai Rendiconti del Circolo matematico di Palermo, 34 (1994), p. 133–
166 ; II, Studies in the History of Modern Mathematics.
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1951, Service de documentation et d’information technique„ 1953.

Petitgirard (Loı̈c)
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