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GÖDEL ET LA THÈSE DE TURING

Pierre Cassou-Noguès

Résumé. — Cet article porte sur la discussion par Gödel de la thèse de Tu-
ring. Pour l’essentiel, nous présentons des notes inédites conservées dans les
Archives Gödel, qui apportent des éléments nouveaux sur la relation ambiguë
de Gödel à Turing. La première section examine la position qu’avait Gödel
avant 1937 sur la possibilité d’une définition de la calculabilité. La deuxième
concerne directement l’interprétation par Gödel de la thèse de Turing. Dans
plusieurs passages, antérieurs à 1937, Gödel qualifie de « mécaniques » les
procédures définies par des règles qui font abstraction du sens des symboles
et ne portent que sur leur forme extérieure. Plusieurs notes montrent ensuite
que Gödel identifie la thèse de Turing comme posant que ces procédures
« mécaniques » (au sens où Gödel l’entendait avant Turing) sont représen-
tables par une machine de Turing. Ce n’est pas en toute rigueur la thèse de
Turing, puisque l’article de 1937, pris à la lettre, entend définir les procédures
« finies ». Ce déplacement laisse Gödel libre de critiquer, après 1964, le texte de
Turing, et la définition des procédures « finies » par des machines de Turing.
La dernière section est consacrée à l’analyse d’un argument élaboré contre
Turing par lequel Gödel entend justifier la possibilité de procédures finies
mais non mécaniques.

Abstract (Gödel and Turing’s thesis). — This paper concerns Gödel’s re-
marks on Turing’s thesis. Of fundamental importance to this analysis are
unpublished notes kept among Gödel’s papers. The first section concerns
Gödel’s position on the possibility of a definition of computability before
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1937. The second and main section presents different notes on Turing’s fa-
mous paper of 1937. Before 1937, Gödel qualified as “mechanical” procedures
defined by rules that ignore the meaning of symbols and only consider their
exterior form. Several notes then show that Gödel interpreted Turing’s thesis
as the claim that mechanical procedures in that sense can be represented by
Turing machines. But Turing himself intended to define “finite” procedures.
This shift enabled Gödel after 1964 to criticize Turing’s paper. The third and
last section deals with Gödel’s argument against Turing, in which Gödel aimed
to establish the existence of finite but non-mechanical procedures.

Ni dans les articles et conférences rassemblés dans les Collected Works, ni
dans les notes, qui restent inédites, de la bibliothèque de Princeton, il n’y
a véritablement de texte, où Kurt Gödel présente de façon circonstanciée
sa position vis-à-vis de la thèse de Turing. Ce ne sont que des remarques
fragmentaires, presque des aphorismes. Et celles-ci posent de nombreux
problèmes. Le problème le plus marquant, et que signale en particulier
J. C. Webb [1990, p. 293] est le suivant. On le sait, dans l’article présenté
en 1936 et publié en 1937, Alan Turing utilise la notion de machine pour
donner une définition de la calculabilité. Une fonction calculable est une
fonction susceptible d’être calculée par une machine d’une certaine sorte,
un dispositif donné par une description d’une certaine forme, disons une
machine de Turing. Il y a d’autres définitions de la calculabilité. La pre-
mière (au moyen du �-calcul) est proposée par Alonzo Church autour de
1934. Une seconde définition est formulée par Gödel lui-même au prin-
temps 1934. Ou, plus exactement, Gödel donne à partir d’une suggestion
de Jacques Herbrand un énoncé que l’on peut considérer comme une
définition de la calculabilité mais que lui-même ne présente pas comme
tel. Nous y reviendrons. Enfin, à la suite de Turing, Emil Post et Stephen
Kleene en 1936 proposeront deux autres définitions. Toutes ces défini-
tions sont équivalentes. Mais, pour Gödel, c’est seulement l’analyse de
Turing qui saisit le contenu intuitif de la notion de calculabilité et montre
alors l’adéquation de ces définitions. C’est pourquoi, du reste, nous par-
lons de la thèse de Turing plutôt que de la thèse de Church-Turing comme
on le fait habituellement. La définition de Turing justifie les autres, celle
de Church par exemple, qui lui est équivalente. En particulier, c’est tou-
jours sur la définition de Turing que s’appuie Gödel pour reformuler
son théorème d’incomplétude et lui donner sa plus grande généralité. En
même temps, Gödel [1972b, p. 306], dénonce « une erreur philosophique
dans le travail de Turing ». Il soutient l’existence de « procédures finies
non mécaniques » ou, par conséquent, des « procédures calculables »
mais calculables de façon non mécanique, ce qui revient à nier la thèse
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de Turing. Turing, en effet, dans son article de 1937, visait à définir les
procédures finies ou « calculables par des moyens finis » grâce à sa notion
de machine. Parler de procédures finies non mécaniques comme le fait
Gödel suppose donc une critique de Turing. Pourquoi, comment alors
se référer à cette même thèse de Turing pour généraliser le théorème
d’incomplétude ?

Nous nous appuierons sur des notes inédites conservées à la biblio-
thèque de l’université de Princeton, pour essayer de donner quelques
éléments nouveaux sur la relation, ambiguë donc, de Gödel à Turing.
Nous n’évoquerons pas les relations de Gödel aux autres acteurs de cette
période, Church, Post ou même von Neumann, ce qui nous entraı̂nerait
trop loin. Nous ne tenterons pas non plus de mesurer la justesse des argu-
ments que Gödel élabore contre Turing. Nous voulons seulement analyser
le développement de la pensée de Gödel sur la question de la calculabilité
et le sens de son interprétation de la thèse de Turing.

Sur le problème que nous venons d’évoquer — Gödel utilisant et criti-
quant à la fois la thèse de Turing — nous voudrions esquisser dès mainte-
nant notre argument. La question est de savoir ce que Gödel accepte dans
la thèse de Turing et ce qu’il refuse. Ou, en d’autres termes, ce que, selon
Gödel, Turing définit avec sa notion de machine. Comme J. C. Webb et W.
Sieg l’ont exactement formulé, à partir de plusieurs passages des textes de
Gödel, le logicien considère la thèse de Turing comme une définition de
la notion de « procédure mécanique ». Cependant, il reste à savoir ce que
Gödel entend par « procédure mécanique » quand il affirme que c’est cette
notion que définit Turing. Or nous voudrions montrer, que, avant même la
thèse de Turing, Gödel utilise le terme de « procédure mécanique » pour
désigner des opérations à l’intérieur d’un système formel, déterminées par
des règles qui ne mettent en jeu que la forme des symboles et font abs-
traction du sens des symboles. Gödel ajoute même, dans des brouillons de
1933 et 1934 (citations (14) et (15) ci-dessous), que l’on pourrait imagi-
ner une machine qui mette en œuvre ces règles. Il ne donne à cette as-
sertion qu’un sens vague. Mais, dans son esprit, la notion de machine de
Turing vient lui donner un sens précis. Nous interpréterons en particulier
une note (citation (19)), où Gödel définit et oppose les procédures méca-
niques et les procédures non mécaniques, comme l’énoncé pour Gödel de
la thèse de Turing : les procédures mécaniques, au sens où Gödel l’a tou-
jours entendu, c’est-à-dire les procédures qui ne considèrent que la forme
des symboles et font abstraction de leur sens, peuvent être représentées par
des machines de Turing. Cette thèse n’est pas celle de Turing, qui entend
définir les procédures « finies ». Ce déplacement passe d’abord inaperçu,
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parce que, jusqu’en 1964, Gödel appelle également « finies » ces procé-
dures « mécaniques ». Il n’en reste pas moins que, pour Gödel, l’objet de
la thèse de Turing, ce sont les procédures qui font abstraction du sens des
symboles et que l’on appelait déjà, avant Turing, en un sens vague, « mé-
caniques ». Turing, pour Gödel, a rendu précise cette idée vague. Cette in-
terprétation de Turing a plusieurs conséquences.

D’une part, la thèse de Turing vue par Gödel laisse ouverte la possibi-
lité qu’il existe des procédures non mécaniques, c’est-à-dire qui font réfé-
rence au sens des symboles, et qui ne soient pas réductibles à des procé-
dures de Turing. Gödel a toujours été convaincu de l’existence de procé-
dures (de suites d’opérations déterminées par des règles univoques) irré-
ductibles à celles que définissent les machines de Turing. Cela est indépen-
dant de son acceptation de la thèse de Turing telle qu’il l’interprète. Néan-
moins, cette thèse, qui, pour Gödel, identifie « procédures mécaniques »
(qui ne concernent que la forme des symboles) et machines de Turing, im-
plique que, s’il existe des procédures non représentables par des machines
de Turing, celles-ci doivent s’appuyer sur le sens des symboles. Le renvoi à
la notion de sens (que nous verrons dans de nombreux passages de Gödel)
pour la définition d’une procédure non mécanique, n’est qu’une consé-
quence immédiate de la thèse de Turing vue par Gödel, et non l’indication
même vague d’une méthode pour obtenir une procédure non mécanique.

D’autre part, si la thèse de Turing porte, en intention, sur les procé-
dures mécaniques, la question reste de savoir dans quelle mesure des
procédures non mécaniques peuvent être dites « finies ». Alors que Gödel
énonce de façon explicite l’existence de procédures non mécaniques en
1946, ce n’est que bien après (à partir de l’automne 1963) qu’il critique
de façon explicite le texte de Turing pour alors soutenir l’existence de
procédures non mécaniques finies. C’est un pas supplémentaire qui ne
suit pas forcément du précédent. Il faudra du reste examiner en quel sens
ces procédures sont « finies ». Mais on comprend que Gödel puisse criti-
quer le texte de Turing, en tant que définition des procédures « finies »,
tout en s’appuyant sur ce qu’il considère comme la « thèse de Turing », la
définition des procédures « mécaniques », pour généraliser le théorème
de 1931.

Les textes inédits sur lesquels nous appuierons notre analyse nous
semblent éclairer certains aspects de la relation de Gödel à Turing. Nous
commencerons (dans la section 1) par rappeler le contexte de la thèse
de Turing en discutant de la position de Gödel vis-à-vis des définitions
antérieures proposées pour la notion de calculabilité. La principale ques-
tion est de savoir si Gödel a pu, comme Church, puis Turing, énoncer
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une thèse pour définir la notion de calculabilité. Cette question a été
bien entendu abordée depuis le début des années 1980, mais nous pré-
senterons quelques notes inédites (notamment citations (3) et (6)). Nous
discuterons ensuite (section 2) de l’interprétation par Gödel de la thèse
de Turing comme définition de la notion de procédure mécanique. Enfin,
la dernière section concerne l’argument de Gödel en faveur de l’existence
de procédures non mécaniques.

1. AVANT TURING : Y A-T-IL UNE THÈSE DE GÖDEL ?

L’histoire de cette période, disons 1926-1937, au cours de laquelle sont
données différentes définitions de la calculabilité, est très précisément dé-
crite par M. Davis [1982], S. Kleene [1981 ; 1987] ou W. Sieg [1997]. Nous
ne ferons qu’en rappeler certains points et présenter quelques notes de
Gödel.

Dans son article de 1931, « Sur les propositions formellement indéci-
dables », Gödel définit les fonctions primitives récursives, qu’il appelle sim-
plement « fonctions récursives ». Il utilise, comme on le fait encore, deux
schémas, récursion sur une variable et substitution [Gödel 1931, p. 158–
159]. On sait dès 1931 que cette définition ne comprend pas toutes les
fonctions calculables. Hilbert, en 1926, donnait déjà l’exemple, qu’il attri-
bue à Ackermann, d’une fonction, définie par une double récurrence, et
qui n’est pas « récursive » au sens de Gödel. 1 Le problème de trouver une
définition plus large et, si possible, omni-englobante des fonctions calcu-
lables, est donc ouvert.

Or l’extension, et la portée, du premier théorème de 1931 dépend
d’abord d’une telle définition. On le sait, Gödel code les formules du
système, qui représente l’arithmétique élémentaire et dont on veut mon-
trer l’incomplétude, par des numéraux. Une fois ce codage effectué, il
faut, au moins, que la classe des axiomes et la relation de conséquence
immédiate s’expriment par des relations arithmétiques, des relations qui
puissent être définies à l’intérieur du système. On peut considérer que
la notion même de système formel exige que celles-ci soient calculables,
c’est-à-dire que l’on puisse déterminer par des moyens finis (selon une
procédure réglée et en un nombre fini d’étapes) si tel numéral est le
code d’un axiome et si, étant donné deux numéraux, l’un est le code
d’une formule qui suit immédiatement de l’autre. Maintenant, dans la
mesure où l’on ne dispose pas en 1931 d’une définition exhaustive de la

1 [Hilbert 1926], [Ackermann 1928], [Gödel 1934, p. 368].
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notion de calculabilité, on ne peut pas absolument exclure qu’il existe des
méthodes de calcul effectives qui ne puissent pas s’exprimer dans l’arith-
métique élémentaire. Autrement dit, on ne peut pas exclure en 1931 que
des systèmes formels, qui permettraient d’exprimer l’arithmétique élé-
mentaire, échappent au théorème d’incomplétude. 2 Au fond, le codage
de Gödel met en évidence que la notion même de système formel dépend
d’une définition de la calculabilité. Et on ne pourra dire avec rigueur que
le théorème d’incomplétude, le premier théorème de 1931, s’applique
à tout système formel comprenant l’arithmétique élémentaire, qu’à la
condition de disposer d’une définition de la calculabilité, définition qui,
via le codage de Gödel, fixe la notion même de système formel.

Il faut également parler de la résistance de Gödel à faire jouer le second
théorème de 1931 contre le programme de Hilbert. En effet, Gödel établit
que la consistance du système ne peut pas être prouvée à l’intérieur du sys-
tème. Toutes les méthodes finitistes connues s’expriment dans l’arithmé-
tique élémentaire. Mais, contrairement à la plupart de ses contemporains,
Gödel refuse de conclure que la consistance de l’arithmétique ne peut pas
être prouvée dans l’arithmétique : 3

(1) « It is conceivable that there exist finitary proofs that cannot be expressed in the forma-
lism [under consideration] » [Gödel 1931, p. 195].

En 1933, dans sa conférence « The present situation in the foundations of ma-
thematics », Gödel semble prendre une position plus tranchée. Il formule
plusieurs contraintes, un système de contraintes qu’il appelle A et que de-
vront vérifier tous raisonnements finitistes. Or

(2) « [...] all the intuitionistic proofs complying with the requirements of the system A which
have ever been constructed can easily be expressed [...] in the system of classical arithme-
tic, and there are reasons for believing that this will hold for any proof which one will
ever be able to construct. So it seems that not even classical arithmetic can be proved non-
contradictory by the methods of the system A [...] » [Gödel 1933, p. 52].

2 Gödel [1931, p. 180–181] énonce des conditions suffisantes à l’application du
théorème. Celles-ci ne sont pas nécessaires et laissent ouverte la question de savoir
à quels systèmes (en dehors des Principia mathematica) le théorème d’incomplétude
s’applique. Il y a une série d’objections à l’application du premier théorème de 1931
à d’autres systèmes que les Principia mathematica, objections qui ne seront clarifiées
qu’avec la définition de la calculabilité par Church et Turing. Celle-ci fixe une notion
stricte de système formel et permet alors de montrer que le théorème d’incomplétude
s’applique à tout système formel en ce sens exprimant l’arithmétique élémentaire.
Cf. [Sieg 1994], [Webb 1990] sur les objections de Herbrand au théorème de Gödel,
[Herbrand 1931], ainsi que la lettre de Church à J. Dawson [2003, p. 362–262].
3 Sur ce point en particulier, cf. les discussions à Vienne et à Göttingen, rapportées
dans Mancosu [1999].
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Cependant, dans le brouillon, Gödel ajoute immédiatement après cette
conclusion une remarque plus prudente, que, il est vrai, il rayera ensuite :

(3) « The reason why this statement cannot be made with absolute certainty is this : all
functions of integer which can be calculated are allowable in the system A but it is im-
possible to describe all the procedures for the construction of such functions and therefore
impossible to give a rigorous proof that all of them are expressible in classical arithmetic,
although it can be plausible that nobody will ever be able to construct any such function »
(Brouillon pour Gödel [1933], papiers Gödel 7b, 26, nous soulignons). 4

Cette note, finalement barrée, rappelle la fin de la lettre de Herbrand
à Gödel, d’avril 1931 [Gödel, Works, t. V, p. 21]. Elle est, dans le texte de
Gödel, difficile à interpréter, et il est vrai que Gödel discute, dans ce pas-
sage, du finitisme. 5 Cela dit, dans la phrase que nous soulignons, Gödel
évoque les « fonctions entières qui peuvent être calculées » et pose qu’il
est « impossible » d’en donner une définition omni-englobante. Cela in-
terdit d’utiliser avec rigueur le deuxième théorème de 1931 contre le pro-
gramme de Hilbert, comme, du reste, de donner sa pleine généralité au
premier théorème : établir l’incomplétude de tout système formel compre-
nant l’arithmétique élémentaire. Il semble en outre que la conviction qu’il
est impossible de définir la calculabilité — cette anti-thèse de Gödel si l’on
peut dire — joue encore l’année suivante, en 1934, et, en réalité, jusqu’à
la lecture de l’article de Turing.

Gödel passe le printemps 1934 à Princeton où il donne un cours sur
le théorème d’incomplétude. Ce cours ne sera publié qu’en 1965, dans
l’anthologie de M. Davis, The undecidable [Davis 1965]. Les notes prises par
Kleene et Rosser, puis revues par Gödel, qui serviront de base à la publica-
tion, ont cependant circulé dès l’été 1934. C’est au cours de ce séjour, en
février ou mars, que Church communique à Gödel sa définition des fonc-
tions calculables, fondée sur le �-calcul. Cette définition, que l’on appel-
lera la thèse de Church, n’emporte pas l’adhésion de Gödel, qui la juge
« tout à fait non convaincante (thoroughly unconvincing) » [Kleene 1987,
p. 55]. Dans la dernière section du cours, Gödel donne lui-même une dé-
finition des fonctions récursives (générales récursives) à partir d’une sug-
gestion de Herbrand. 6 Gödel, cependant, ne pose pas son énoncé comme
une définition de la calculabilité. Il écrira en 1964 à M. Davis :

4 Nous conserverons pour éviter toute ambiguïté l’anglicisme Papiers Gödel dans
les références bibliographiques.
5 Sur ce point en particulier, cf. [Sieg 2005, p. 179–180].
6 Cf., en particulier, [Sieg 2005].
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(4) « As far as the second half of section 3 is concerned, it is not true that footnote 3 is a
statement of Church’s Thesis. The conjecture stated there only refers to the equivalence of
‘finite (computation) procedure’ and « recursive procedure’. However, I was, at the time,
not at all convinced that my concept of recursion comprises all possible recursions ; and
in fact the equivalence between my definition and Kleene’s in Math. Ann 112 [Kleene
1936] is not quite trivial » [Papiers Gödel, 1b, 138 ; lettre reprise dans [Davis 1965,
p. 40]].

La note 3, dans le texte de Gödel, se rapporte à la phrase suivante :

« Recursive [primitive recursive] functions have the important property that, for each
given set of values of the arguments, the value of the function can be computed by a finite
procedure ».

Gödel note alors :

(5) « The converse seems to be true if, beside recursions according to scheme (2), recursions
of other forms (e.g. with respect to two variables simultaneously) are admitted. This cannot
be proved, since the notion of finite computation is not defined, but serves as a heuristic
principle ».

En 1964, pour la reprise dans l’anthologie de M. Davis, Gödel ajoute
que « cet énoncé est maintenant hors de propos (outdated). Voir le Post-
scriptum » [Gödel 1934, p. 348].

La lettre à Davis (citation (4)) montre donc que ce principe énoncé
dans la note (citation (5)), ou le paragraphe 9 du cours, sur les « fonc-
tions générales récursives », ne devait pas constituer dans l’esprit de Gödel
une définition de la calculabilité. Dans la note (citation (5)), Gödel semble
alors indiquer de façon informelle que les fonctions calculables sont dé-
finies par certaines récursions, sans affirmer que sa définition de la « ré-
cursivité générale » comprend toutes les formes de récursions possibles,
ni même que cette définition est équivalente à celle de Church, comme
Kleene le prouvera en 1935. La construction de la citation (5) est ambiguë,
puisque l’on ne sait pas si « sert comme un principe heuristique » concerne
la notion de calcul fini ou la proposition énoncée dans la phrase qui pré-
cède. Disons donc vaguement que, comme en 1933, Gödel considère la no-
tion de calculabilité comme non définie et objet seulement d’un principe
heuristique.

Dans cette perspective, cependant, le brouillon de la lettre à Davis
contient un paragraphe surprenant. Gödel écrit :

(6) « In conclusion of my lectures, I gave expression to (put forth, articulated) the conjec-
ture (not rendered in the above notes) that general recursiveness (as defined in 9) would
prove to be an adequate definition of the concept of ‘finite procedure’ and consequently
would make a completely general formulation of the previous results [the incompleteness
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theorems] possible. The definition of the concept of general recursiveness in 9 which was
obtained only in the course of these lectures had the aim of making completely general ver-
sions of the previous results possible » [Papiers Gödel, 4b, 33, 020634]. 7

Gödel affirme avoir formulé une thèse similaire à celle de Church, ce
qu’il nie dans la lettre qu’il enverra effectivement à M. Davis. Et il est diffi-
cile d’accepter cette hypothèse d’une « thèse » de Gödel, puisque, comme
on l’a vu, Gödel en 1933 et encore en 1934, ne voit dans la notion de cal-
culabilité que l’objet d’un principe heuristique, et non celui d’une défini-
tion. Quel sens alors donner à cette remarque dans le brouillon de la lettre
à M. Davis ? C’est ou bien que, rétrospectivement, Gödel n’est pas certain
de la portée qu’il attribuait en 1934 à sa définition des « fonctions géné-
rales récursives », ou bien que le logicien ne veut pas laisser à Church seul
le mérite d’une définition de la calculabilité. 8

Une autre lettre à M. Davis, un peu plus tardive, revient du reste sur ce
point. Gödel affirme à nouveau avoir énoncé une thèse équivalente à celle
de Church, en se référant non plus à son cours de 1934, mais à un article
de 1936.

(7) « Moreover it occurred to me that, in case you mention explicitly that in these lectures
I did not state an equivalent of Church’s Thesis, you should also mention that I did so
(for computation procedures) in the last paragraph of my paper on the length of proof »
[Papiers Gödel, 1b, 38].

Cet article [Gödel 1936] reprend de celui de 1931 la notion de fonc-
tion calculable dans un système formel S . Une fonction �(x) est calculable
dans S si pour tout numéral m il existe un numéral n tel que �(m) = n
est prouvable dans S . À partir de l’arithmétique élémentaire (au premier
ordre, S1), Gödel considère une hiérarchie de systèmes Si à l’ordre i. Il
remarque qu’une fonction calculable dans l’un de ces systèmes est déjà
calculable dans S1 . Ainsi, cette « notion de ‘calculable’ est en un certain
sens absolue » [Gödel 1936, p. 399]. Gödel fera une remarque analogue à
propos de la notion de « récursivité générale (ou calculabilité de Turing) :

7 Ce brouillon ne se trouve pas dans le dossier de la correspondance avec M. Davis,
mais dans celui de la correspondance avec l’éditeur de [Davis 1965].
8 Gödel indique aussi avoir obtenu sa définition durant son séjour à Princeton. Les
Archives comprennent différents brouillons pour différentes parties du cours mais (à
ma connaissance) aucun ne concerne la définition de la récursivité générale si ce n’est
un long texte (l’item 040117) qui présente l’ensemble du cours et pourrait du reste
avoir été utilisé comme notes en classe. Dans ce texte, Gödel définit les fonctions gé-
nérales récursives en des termes proches (mais non identiques) aux notes qui seront
ensuite distribuées.
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« Par une sorte de miracle », « ces concepts ne dépendent pas du forma-
lisme choisi » [Gödel 1946, p. 150].

Cependant, il n’est pas clair que la note de 1936, qui remarque le
caractère « absolu » de la notion de « fonction calculable dans un système
formel », c’est-à-dire le fait que cette notion ne s’élargit pas à mesure que
l’on s’élève dans la hiérarchie des systèmes Si , puisse avoir constituée
dans l’esprit de Gödel à l’époque une thèse analogue à celle de Church.
La notion de « fonction calculable dans un système formel (comprenant
l’arithmétique élémentaire) » s’avèrera sans doute équivalente à la calcu-
labilité au sens de Church, de Turing ou de Gödel [1934]. Cependant,
il faut prendre en compte que, jusqu’à la lecture de Turing, Gödel n’a
sans doute jamais été convaincu que sa définition, ou celle de Church,
ait inclus la totalité des fonctions calculables. Plus précisément, dans la
citation (3), Gödel envisage l’existence de fonctions calculables qui ne
s’exprimeraient pas dans l’arithmétique élémentaire. Or, dans ce cas,
l’absoluité de la notion de « fonction calculable dans un système formel »,
le fait que cette notion ne s’élargisse pas lorsque l’on monte dans la hié-
rarchie des systèmes, ne signifie pas qu’elle comprenne la totalité des
fonctions calculables. 9

Il faut donc prendre avec précaution ces passages où Gödel affirme
avoir énoncé une thèse comparable à celle de Church. L’ambiguı̈té peut
venir de ce que, pour Gödel, la thèse de Church n’est pas convaincante
par elle-même. Et, dans ce cas, le travail de Church a surtout consisté à
donner une définition équivalente à celle de Turing et que celle-ci justifie
alors. Or, une telle définition, Gödel en a également donné une, et à peu
près au même moment. Personne avant Turing ne semble, dans l’esprit
de Gödel, avoir pu établir l’adéquation des définitions proposées.

Ainsi, dans un texte non daté, mais vraisemblablement de la fin des an-
nées trente, Gödel ajoute après avoir présenté la définition des fonctions
récursives de 1934, qu’il attribue du reste seulement à Herbrand :

(8-bis) « That this [cette définition] really is the correct definition of computability was
established beyond any doubt by Turing » [Gödel 193?, p. 168].

Wang écrit également, avec la permission de Gödel, qui a souvent lui-
même rédigé et, en tout cas, relu et corrigé ces passages :

9 Sieg [1994 ; 2006] met également en question cette « thèse » de Gödel dans l’article
de 1936, en soulignant que la notion de « fonction calculable dans un système formel »
dépend de celle de système formel, que Gödel ne considèrera pas comme clairement
fixée avant les travaux de Turing.
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(8) « Hence we have an excellent example here of a concept which did not appear sharp
to us but has become so as a result of a careful reflection. The resulting definition of the
concept of mechanical procedure by the sharp concept of ‘performable’ by a Turing machine
is both correct and unique. [...] Gödel emphasizes that there is at least one highly interesting
concept which is made precise by the unqualified notion of a Turing machine. Namely a
formal system is nothing but a mechanical procedure for producing theorems. The concept
of formal system requires that reasoning be completely replaced by ‘mechanical operations’
on formulas in just the sense made clear by Turing machines. [...] In fact, the concept of
formal systems was not clear at all in 1931. Otherwise, Gödel would have then proved his
incompleteness theorem in a more general form » [Wang 1974, p. 84, nous soulignons].

Ces deux dernières phrases pourraient également décrire la situation
en 1934. Contrairement à ce qu’il indique dans le brouillon de la lettre à
M. Davis (citation (6)), Gödel n’applique pas sa définition des fonctions
« générales récursives » à la notion de système formel et à la généralisation
du théorème de 1931. Cette définition n’apparaı̂t que dans le dernier pa-
ragraphe du cours de 1934, comme un appendice. Les conditions pour
l’application du théorème d’incomplétude (dans la section 6 du cours)
sont équivalentes à celle de 1931. C’est seulement Turing qui, pour Gödel,
donne une définition convaincante, adéquate au sens de la notion. Gödel
reconnaı̂t dans des notes ajoutées en 1963 à l’article de 1931 et en 1964 au
cours de 1934 :

(9) « In consequence of later advances, in particular of the fact that, due to A. M. Turing’s
work, a precise and unquestionably adequate definition of the general concept of formal
system can now be given, the existence of undecidable arithmetical propositions [...] can
now be proved rigorously for every consistent formal system containing a certain amount
of finitary number theory » [Gödel 1934, Postscriptum 1964, p. 369]. 10

Et, comme le souligne W. Sieg [2006], c’est une lettre à Nagel qui est
sur ce point la plus claire :

(10) « It was only by Turing’s work that it became completely clear, that my proof is appli-
cable to every formal system containing arithmetic » [Gödel à Nagel, 14 mars 1957, in
[Gödel, Works, t. V, p. 147], Gödel souligne].

2. AVEC TURING : LES PROCÉDURES MÉCANIQUES

Le paragraphe de Wang (citation (8)) illustre plusieurs points, décisifs
pour l’interprétation gödelienne de la thèse de Turing : (i) la notion en
question sous le terme de « calculabilité » est celle de procédure méca-
nique, ou de système formel ; (ii) cette notion joue déjà un rôle en logique

10 Cf. également [Gödel 1931, note de 1963, p. 195].
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avant Turing, sous la forme d’un concept qui n’est perçu que de façon
confuse ; (iii) c’est bien Turing qui résout le problème de la calculabilité,
parce que sa définition est adéquate à la notion en question.

Nous développerons simplement ces trois points. La notion à laquelle
se rapporte la thèse de Turing, ou que les machines de Turing permettent
de définir et à laquelle elles donnent une forme mathématiquement utili-
sable, est celle de « procédure mécanique ». Cette notion est au fondement
de celle de système formel. Il y a en effet de nombreux passages où Gödel
décrit la déduction de théorèmes au sein d’un système formel comme une
procédure mécanique.

(11) « ‘finite procedure’ should mean ‘mechanical procedure’. This meaning, however, is re-
quired by the concept of formal system, whose essence it is that reasoning is completely repla-
ced by mechanical operations on formulas » [Gödel 1934, Postscriptum 1964, p. 369].

Ou encore

(12) « Formal systems in the proper sense of the term, whose characteristic property is that
reasoning in them, in principle, can be completely replaced by mechanical devices [...] »
[Gödel 1931, note de 1963, p. 195].

Le point crucial est que Gödel lui-même énonce explicitement cette
clause, que le raisonnement formel est mécanique, avant l’article de Tu-
ring. Le terme « mécanique », ou la référence à une machine, à propos
du raisonnement logique, apparaı̂t chez Frege et dans l’article de von
Neumann de 1927. De même, Gödel dans son cours de 1934 note :

(13) « a formal system consists only of symbols and mechanical rules relating to them » [Gö-
del 1934, p. 349].

Mais, nulle part avant l’article de Turing, cette référence au mécanique
n’est aussi claire que dans la conférence de 1933 et son brouillon. Gödel
définit alors l’idée de formalisme de la façon suivante :

(14) « The outstanding feature of the rules of inference being that they are purely formal, i.e.
refer only to the outward structure of the formulas, not to their meaning, so that they could
be applied by someone who knew nothing about mathematics, or by a machine » [Gödel
1933, p. 45].

Ce passage est développé dans le brouillon. Gödel ajoute :

(15) « [The rules of inference] could be applied by someone who knew nothing about the
meaning of the symbols. One could easily devise a machine which would give you as many
correct consequences of the axioms as you like, the only trouble would be that it would give
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consequences at random and therefore not the results one is interested in » [Papiers Gö-
del, 7b, 26, 040109, brouillon pour [Gödel 1933], nous soulignons]. 11

La même phrase apparaı̂t dans le texte d’une conférence à la Philosophi-
cal Society of New York University. Gödel définit donc la notion de formalisme
par l’idée que les symboles y sont considérés abstraction faite de leur sens,
et cela revient à dire qu’ils sont utilisés « mécaniquement ». En fait, avant
Turing mais confusément, Gödel imagine une machine capable de dé-
duire les (ou peut-être seulement des) théorèmes qui suivent des axiomes.
Cependant, de la même façon qu’il voit dans la notion de calculabilité un
principe heuristique, qui ne fait pas l’objet d’une définition, Gödel ne se
rend pas compte que l’on peut décrire de façon précise ces machines à
déduire. Et c’est ce que fera Turing. On peut considérer le passage cité
du livre de Wang (citation (8)), pour autant qu’il a été lu et approuvé par
Gödel, comme autobiographique. Le travail de Turing a été de préciser et
de rendre mathématiquement utile une notion à laquelle Gödel lui-même
renvoyait mais qu’il n’apercevait que confusément.

C’est pourquoi également, après l’article de Turing, Gödel, dans ses
conférences « populaires », ne modifie pratiquement pas l’explication
donnée pour la notion de système formel. Tantôt, le logicien ne fait que
spécifier la machine, à laquelle il se référait déjà en 1933, comme une
machine de Turing. Ainsi, la conférence « Gibbs » de 1951 évoque :

(16) « a well-defined system of axioms and rules [...]. This requirement for the rules and
axioms is equivalent to the requirement that it should be possible to build a finite machine,
in the precise sense of a ‘Turing machine’, which will write down all the consequences of
the axioms one after the other » [Gödel 1931, p. 308].

Un passage du cours de logique donné à l’université de Notre-Dame en
1939 ne mentionne du reste pas même Turing. C’est que, au fond, Gödel
ne fait que préciser cette machine dont il avait déjà eu l’idée six ans aupa-
ravant :

(17) « It is the chief purpose of the axiomatisation of logic to avoid reference to the meaning of
formulas i.e. we want to set up a calculus which can be handled purely mechanically (i.e.
a calculus which makes thinking superfluous and which can replace thinking for certain
questions). In other words, we want to put into effect as far as possible Leibniz’ program
of a calculus ratiocinator [...] This program has been partly carried out by the axiomatic
system for logic. [...] It would actually be possible to construct a machine which would do
the following thing : the supposed machine is to have a crank and whenever you turn the
crank once the machine would write down a tautology of the calculus of predicates. And

11 Également, 7b, 30, item 040123, conférence à la Philosophical Society of New York
University, 18 avril 1934.
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it would write down every existing tautologies of the calculus of predicates if you turn the
crank sufficiently often. So the machine would really replace thinking completely as far as
deriving formulas of the calculus of predicates is concerned » [Papiers Gödel, 8a, 59,
item 040210]. 12

On comprend donc mieux pourquoi, à la différence de la thèse de
Church, celle de Turing, avec la référence à la machine, a de quoi
convaincre Gödel. C’est qu’elle exprime sous une forme rigoureuse,
une idée confuse dans la logique antérieure et dans les textes de Gö-
del eux-mêmes. Elle est adéquate au contenu de la notion en question,
comme du reste la formulation de Post, au moyen de son « travailleur ».
Elle est « intensionnellement adéquate » :

(18) « The precise definition of the concept of formal system is achieved by means of the
general concept of mechanical (or computational procedure or algorithm) which, no doubt,
is adequately explained by the concept of a Turing machine. Extensionally equivalent
concepts of computability had been defined before Turing’s work and their adequacy had
been highly probable (see : Church, 1936). Turing’s definition was given simultaneously
by E. Post in the Journal of symbolic logic. But only Turing has really analysed the
content of computation and has definitively established the adequacy of the definitions.
[...] Only Turing’s and Post’s definitions are also intensionally adequate and thereby
settle the question definitively » [Papiers Gödel, 8c, 106, item 040332]. 13

Revenons en arrière. Dès la conférence de 1933, et à l’instar d’une cer-
taine tradition logique, Gödel caractérise la notion de système formel par
ceci que les symboles y sont considérés abstraction faite de leur sens, et qua-
lifie alors le raisonnement de « mécanique ». C’est, pour Gödel, cette idée
de procédure mécanique que vient fixer la thèse de Turing. J’ai déjà men-
tionné cette note où Gödel oppose les procédures non mécaniques (dont
on discutera dans la section suivante) et les procédures mécaniques pour,
manifestement, définir les unes et les autres :

12 Cours de logique à Notre Dame, 1939. Cité en partie dans [Sieg 2006].
13 Brouillon pour le Postcriptum à [Gödel 1934] Gödel souligne et se réfère aux
articles de Church, « An unsolvable problem of elementary number theory » reproduit dans
[Davis 1965], et de Post, « Finite combinatory processes. Formulation I », reproduit dans
[Davis 1965]).
Dans un autre texte, un brouillon pour la révision de 1972, Gödel insiste aussi sur la
forme mathématique que prend avec Turing l’idée de procédure mécanique : « Turing
has given a much more elaborate definition of the [...] concept of mechanically computable num-
ber theoretic function, and it was exactly this greater detail which apparently made this concept
precisely intelligible and thereby accessible to mathematical treatment » [Papiers Gödel, 9b,
141, 040450].
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(19) « Präzise Formulierung ‘non mechanical procedure’ : procedure into which some mea-
ning essentially enters (as an element which cannot be eliminated and which is successful
for all problems of a class for which no Turing procedure exists).

[A] mechanical procedure of [typing ?] formulas composed of finite number of letters is
a procedure which, given any desired amount of paper for typing but nothing else outside
the machine, can be carried out by a machine with a finite number of parts each of which,
as far as they are relevant for the work of the machine, has only a finite number of different
possible states or positions » [Papiers Gödel 8c, 106, 040332].

Nous discuterons plus loin de la première partie de cette note. Nous
nous attachons pour l’instant à la deuxième partie sur les procédures mé-
caniques. Gödel y décrit une machine finie que, puisque le nom de Tu-
ring est mentionné dans la première partie dela note, on peut considérer
comme une machine de Turing. Le passage revient alors à ceci : une pro-
cédure mécanique est une procédure de Turing. Or, si cette phrase ne doit
pas être une tautologie (une simple identité, a=a), il faut prendre « procé-
dure mécanique » au sens où Gödel l’entendait avant Turing. Les citations
(11), (12), (13), (14), (15), (17) semblent poser, comme une définition
du terme « mécanique » :

Procédure mécanique =
DEF

Procédure qui ne repose que sur la forme des symboles et

fait abstraction de leur sens.

La citation (19) établit alors :

(Thèse de Turing vue par Gödel)
Procédure mécanique = Procédure réalisable sur une machine de Turing

Bref, une procédure qui ne repose que sur la forme des symboles dans
l’abstraction de leur sens est représentable par une machine de Turing.
En outre, comme le montre la citation (18), avec la référence à une
« adéquation intensionnelle », cette égalité ne concerne pas l’extension
des concepts mais les concepts eux-mêmes : le concept de machine de
Turing (ou réalisable par une machine de Turing) est identique à celui de
procédure mécanique. C’est, pour Gödel, le même concept d’abord vu
de façon confuse puis de façon précise.

La citation (19) a le mérite d’énoncer clairement une thèse, identifiant
deux termes, procédures mécaniques et machines de Turing. Elle soulève
plusieurs difficultés. D’abord, cette thèse n’est pas celle que défend Tu-
ring dans son article de 1937. Prenons-le à la lettre. Turing [Turing 1937,
p. 116] entend définir les « procédures finies » ou « calculables par des
moyens finis », et non les procédures « mécaniques ». La citation (19) pré-
sente donc seulement la thèse de Turing vue par Gödel. Au regard de la
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thèse explicite que défend Turing, « mécaniques » a été substitué à « fi-
nies ». Cette première remarque pose la question de l’usage par Gödel lui-
même du terme « fini » ou « procédure finie ».

Il faut dès maintenant noter un changement important, sur lequel
nous insisterons encore dans la dernière partie de cet article. L’année
1964 marque un tournant. Jusque là, Gödel qualifie également de « fi-
nies » ces « procédures mécaniques ». On le voit notamment dans les
citations (4), (5), (6). Il brouille alors le sens de la thèse qu’il tire de l’ar-
ticle de Turing. La thèse de Turing, pour Gödel, a toujours porté sur les
« procédures mécaniques », c’est-à-dire les procédures qui ne font pas ré-
férence au sens des symboles. Cependant, ces « procédures mécaniques »,
Gödel, jusqu’en 1964, les dit également « finies ». C’est seulement à partir
de 1964 (et avec un certain flottement pour l’année 1964) que Gödel dis-
tingue l’usage des deux termes « mécanique » et « fini », ce qui rend alors
claire la thèse qu’il lit chez Turing : les procédures « mécaniques » sont
définies par les machines de Turing, alors qu’il existe des procédures « fi-
nies » non représentables par des machines de Turing. Nous reviendrons
sur ce deuxième point.

Si notre interprétation des textes est correcte, Gödel lit dans l’article
de Turing la thèse que les procédures « mécaniques », qui ne font pas
référence au sens des symboles, sont représentables par des machines de
Turing, certains dispositifs possédant des caractéristiques que fixe Turing.
Comment, pour Gödel, cette thèse est-elle justifiée ? Comment montrer
que toute procédure que peut réaliser un calculateur humain sans réfé-
rence au sens des symboles, peut également être produite sur une machine
de Turing ? Pour reprendre en français une distinction souvent formulée
en anglais, il y a le « calculator » (computor) humain et « le calculateur »
(computer) de Turing. La thèse de Turing identifie les procédures finies
du « calculator » avec celles du « calculateur ». Cette identification, Turing
vise à la justifier par une série de trois arguments. Gödel déplace la thèse
de Turing, en la faisant porter non plus sur les procédures « finies » mais
« mécaniques ». Cependant, il lui resterait à justifier cette nouvelle thèse
(d’autant plus que, comme on le verra, Gödel critique l’un des arguments
que Turing utilise pour établir sa propre thèse). Or il n’y a nulle part de
textes où Gödel argumente de façon détaillée l’identification des procé-
dures du « calculator », qui fait abstraction du sens, et celles du calculateur
de Turing. Va-t-il de soi que toutes les procédures que l’on peut effectuer
en manipulant des symboles sans considération de leur sens peuvent être
réalisées par une machine de Turing ? Si cela ne va pas de soi, pourquoi
Gödel ne s’attache-t-il jamais à discuter de cette question ?
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En particulier, l’article de 1958, repris en 1972, « On an extension of fi-
nitary mathematics... », traduit l’arithmétique classique dans un certain sys-
tème dont les objets sont des fonctions calculables (une hiérarchie de fonc-
tions calculables). Puisque cette notion doit alors donner un fondement à
l’arithmétique, on pourrait s’attendre à ce que Gödel en explicite le sens
intuitif. Or, au contraire, Gödel pose simplement :

(20) « The phrase ‘well-defined mathematical procedure’ is to be accepted as having a clear
meaning without any further explanation » [Gödel 1972a, p. 275]. 14

Le logicien commente en note, dans la version de 1958 :

(21) « As is well known, A. M. Turing, using the notion of a computing machine, gave
a definition of the notion of computable function of the first order. But, had this notion
not already been intelligible, the question whether Turing’s definition is adequate would
be meaningless » [Gödel 1958, p. 245].

Et la version de 1972 précise :

(22) « [...] However, if the term ‘mechanically computable’ had not had a clear, although
unanalysed, meaning before, the question as to whether Turing’s definition is adequate
would be meaningless, while it undoubtedly has an affirmative answer » [Gödel 1972a,
p. 275].

On voit donc à nouveau que, dans l’esprit de Gödel, Turing a seule-
ment transformé une notion claire mais confuse en une notion claire
et distincte. La notion de procédure mécanique préexiste au travail de
Turing, qui la fixe et lui donne un contenu mathématique. Et c’est à son
adéquation à cette notion préexistante que la portée de la définition de
Turing doit être mesurée. Mais cela ne se comprend que dans la mesure
où la notion en question ne préexiste pas seulement comme une idée
confuse dans la logique avant Turing mais comme un concept en soi, une
idée platonicienne et que, selon le mot de Gödel [Gödel 1951, p. 311–
312], l’ego n’a pas créée à partir de rien. C’est ce qu’un autre texte dans
le livre de Wang montre clairement :

(23) « ‘If we begin with a vague intuitive concept, how can we find a sharp concept to corres-
pond to it faithfully ?’ The answer Gödel gives is that the sharp concept is there all along,

14 Une première version, [Gödel 1941], définissait ces fonctions par certains sché-
mas, ce qui obligeait ensuite à prouver que les fonctions ainsi définies vérifiaient les
axiomes du système. Cette preuve utilise une induction sur les segment [0; �0], de
sorte que ce fondement de l’arithmétique repose sur une induction transfinie, sans
qu’il y ait gain par rapport à la démonstration de consistance que donnait Gentzen
en 1935. Dans les versions de 1958 et de 1972, Gödel considère plutôt ces fonctions
calculables comme une notion primitive, « immédiatement intelligible », ce qui le dis-
pense de recourir à l’induction précédente.
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only we did not perceive it clearly at first. This is similar to our perception of an animal first
far away and then nearby. We had not perceived the sharp concept of mechanical procedure
sharply before Turing, who brought us to the right perspective. And then we do perceive the
sharp concept. There are more similarities than differences between sense perceptions and
the perception of concepts » [Wang 1974, p. 84-85].

De façon explicite dans ce texte, Gödel considère le concept de « pro-
cédure mécanique », ou de machine de Turing, comme un objet en soi
qu’il compare aux objets perceptifs et décrit donc dans les mêmes termes
que le concept d’ensemble. Ces concepts nous sont donc d’abord donnés
dans une intuition avant d’être fixés dans certains énoncés. La thèse de
Turing, dans l’interprétation de Gödel, fixe le concept de « procédure
mécanique » comme les axiomes de la théorie des ensembles fixent le
concept d’ensemble. La justification alors de la thèse de Turing semble
tenir à l’intuition et à l’évidence. C’est pourquoi, semble-t-il, Gödel ne
la discute pas. L’évidence la montre « indubitablement » adéquate (ci-
tation (22)). La thèse de Turing est un énoncé analogue à ces axiomes
qui « s’imposent à nous comme étant vrais » [Gödel 1964, p. 268]. Cet
appel à l’intuition constitue un argument assez faible mais c’est, à notre
connaissance, la seule justification de la thèse que Gödel tire de Turing.

3. APRÈS TURING : LES PROCÉDURES NON MÉCANIQUES

On l’a vu, Gödel interprète la thèse de Turing comme une définition de
la notion de procédure mécanique et, par conséquent, de celle de système
formel. Mais il s’agit d’un déplacement par rapport à la portée que Turing
veut donner à sa thèse. Turing [Turing 1937, p. 116, déjà cité] parle de
calcul « par des moyens finis » (« by finite means »). Comme le souligne J. C.
Webb, Gödel indique explicitement, dans le Postscriptum ajouté en 1964
au cours de 1934, qu’il n’accepte la thèse de Turing que dans la mesure où

(24) « ‘finite procedure’ is understood to mean ‘mechanical procedures’ » [Gödel 1934,
p. 370]. 15

Cet énoncé, il faut toutefois le situer dans son contexte, pour com-
prendre ce que signifie l’expression de « procédure mécanique ». On voit
alors bien que Gödel opère un déplacement par rapport à la thèse de
Turing : des procédures finies aux procédures mécaniques. Gödel défend
une autre thèse, qui ne recouvre pas la thèse de Turing. En particulier,
dans ce Postscriptum de 1964, Gödel peut donc évoquer l’existence de

15 Cf. la discussion de Webb [Webb 1990, p. 296 et suivantes].



GÖDEL ET LA THÈSE DE TURING 95

« procédures finies non mécaniques », qui ne tombent pas dans le cadre
de la thèse de Turing telle qu’il l’interprète, sans remettre en question
l’adéquation de la thèse de Turing comme définition des procédures mé-
caniques. Il y a là — soutient Gödel — deux questions « indépendantes » :

(25) « Note that the question of whether there exist finite non-mechanical procedures, not
equivalent with any algorithm, has nothing whatsoever to do with the adequacy of the
definition of ‘formal system’ and of ‘mechanical procedures’ » [Gödel 1934, p. 370].

Ainsi, dans l’esprit de Gödel, Turing a correctement défini un certain
genre de procédures, les procédures mécaniques (par exemple, les procé-
dures impliquées dans la dérivation des théorèmes d’un système formel),
mais il existe d’autres procédures, réglées, univoques, qui ne sont pas
mécaniques et n’entrent pas dans la définition de Turing. C’est de ce
problème, de l’existence de procédures non mécaniques finies, qu’il faut
maintenant discuter.

Gödel, dans le Postscriptum de 1964, soulève deux questions à la fois.
Il y a la question de savoir si l’on peut envisager des procédures non mé-
caniques. Et il y a la question de savoir dans quelle mesure ces procédures
peuvent être dites « finies ». Or Gödel a toujours défendu l’existence de
procédures non mécaniques, mais leur qualification comme finies ne date
que de 1964. Du reste, le brouillon du Postscriptum énonçait seulement à
la place de la citation (25)

(26) « It is possible that there exist non-mechanical procedures non replaceable by Turing
machines » [Papiers Gödel, 8c, 106, 040332].

Le caractère fini de ces procédures n’y est pas mentionné. De la même
manière, l’article de 1958 attribue à Turing la définition des « fonctions cal-
culables » (computable functions), alors que la version révisée en 1972 ne lui
attribue plus que la définition de « fonctions mécaniquement calculables »
(mechanically computable functions) [Gödel 1972a, p. 275]. Et, dans de nom-
breux brouillons, Gödel évoque des « calculs par des procédures de pen-
sée » (computations by thought procedures) et soutient :

(27) « There are no sufficient reasons for expecting these two concepts [« computation by
thought procedures » et « mechanical computation » dans les mots de Gödel] to have the
same extension » [Papiers Gödel, 9b, 141, 040450].

Ainsi, c’est seulement après 1964 (et non sans réserve 16) que Gödel
qualifie de « finies » ou de « calculs » (computations) des procédures qui

16 Gödel ajoute au passage précédent : « Also it may be questioned that computation
would be a suitable name for such procedures » [Papiers Gödel, 9b, 141, 040450].
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débordent l’analyse de Turing. Cependant, Gödel a toujours cru à la pos-
sibilité de procédures réglées non mécaniques. La célèbre note à l’article
1931 suggère déjà :

(28) « The true reason for the incompleteness inherent in all formal systems of mathematics
is that the formation of ever higher types can be continued into the transfinite (see Hil-
bert [Hilbert 1926]), while in any formal system at most denumerably many of them are
available ». 17

Or, puisque Gödel, du moins en 1933, décrit le raisonnement à l’inté-
rieur d’un système formel comme une procédure « mécanique », la possi-
bilité de dépasser (par la formation de types transfinis et, apparemment,
au-delà du dénombrable) le formalisme semble alors impliquer la recon-
naissance de raisonnements qui ne pourront plus être dits « mécaniques ».
Le terme « mécanique » serait alors pris en un sens pré-turingien. De façon
explicite et après l’article de Turing, les « Remarques » de Gödel à Prince-
ton en 1946 évoquent une procédure pour l’extension d’un système for-
mel par l’adjonction de nouveaux axiomes, « qui pourraient être décrits
et rassemblés de façon non constructive (could be described and collected toge-
ther in some non-constructive way) et pour lesquels « vaudrait un résultat de
complétude » [Gödel 1946, p. 151]. 18 Si cette procédure n’est pas décrite
avec précision, elle supposerait manifestement des règles permettant d’ob-
tenir à chaque étape un nouvel axiome. Et, si le système ainsi constitué doit
pouvoir être complet, chaque proposition formulable pouvant y être ou
démontrée ou réfutée (et non les deux à la fois), il faut qu’elle ne se ré-
duise pas à une procédure mécanique, représentable par une machine de
Turing. Il faut donc admettre l’existence de procédures réglées, bien défi-
nies et, pourtant, non mécaniques.

Ainsi, la nouveauté du Postscriptum de 1964 n’est pas dans la mention
de procédures non mécaniques mais dans leur qualification comme « fi-
nies ». Cela donne un point d’appui pour analyser la position de Gödel,
telle qu’elle est décrite dans la citation (25). En effet, soutenir l’existence
de procédures finies non mécaniques semble engager à une critique de
l’article de Turing, qui, pris à la lettre, entend définir par l’idée de machine
l’ensemble des procédures finies : les calculs « par des moyens finis ».

Gödel développe en effet un argument contre Turing. Une première
version en a été retrouvée dans les épreuves corrigées par Gödel de son ar-
ticle pour Dialectica, de 1972. Une seconde version a été publiée par Wang,

17 Gödel [1931, p. 181] se réfère à l’article de Hilbert, « Sur l’infini » [Hilbert 1926].
18 Sieg [2006] discute également des remarques de Gödel en les confrontant à l’in-
tervention préalable de Tarski publiée par Sinaceur [2000].
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dans son livre de 1974, From Mathematics to Philosophy. Nous nous attache-
rons surtout à la deuxième version qui est plus claire :

(29) « Turing, in Proc. Lond. Math. Soc. 42 (1936) p. 250, gives an argument which is
supposed to show that mental procedures cannot carry any further than mechanical proce-
dures. However, this argument is inconclusive, because it depends on the supposition that
a finite mind is capable of only a finite number of distinguishable states. What Turing dis-
regards completely is the fact that mind, in its use, is not static but constantly developing.
This is seen, e.g., from the infinite series of ever stronger axioms of infinity in set theory,
each of which expresses a new idea or insight. A similar process takes place with regard to the
primitive terms. E.g., the iterative concept of set became clear only in the past few decades.
Several more primitive ideas now appear on the horizon, e.g., the selfreflexive concept of
proper class. Therefore, although at each stage of the mind’s development the number of its
possible states is finite, there is no reason why this number should not converge to infinity
in the course of its development. Now there may exist systematic methods of accelerating,
specializing, and uniquely determining this development, e.g. by asking the right questions
on the basis of a mechanical procedure. But it must be admitted that the precise definition
of a procedure of this kind would require a substantial deepening of our understanding of
the basic operations of the mind » [Gödel, Works, t. V, p. 576. Gödel souligne]. 19

Une première difficulté concerne la date de cet argument. J. Dawson
[Dawson 1997, p. 232], s’appuyant sur le journal de Morgenstern, qui
rapporte une conversation avec Gödel à ce sujet, propose décembre 1969.
Nous conjecturons pourtant que cet argument est antérieur. Nous avons
pour cela plusieurs éléments. Il y a des remarques qui sous-entendent
cet argument et ne prennent sens que sur cette base dans les brouillons
pour le Postscriptum de 1964 (par exemple, citation (31) ci-dessous).
Il y a également un papier daté « septembre-décembre 1963 » qui isole
la citation de Turing (citation (30) ci-dessous), dont part l’argument de
Gödel, et l’entoure d’une multitude de flèches, ce qui montre bien que,
dans l’esprit de Gödel, c’est déjà là le point faible de la démonstration
qu’il prête à Turing. 20 C’est donc vraisemblablement en préparant le
Postscriptum pour la réédition de ses cours de 1934 que Gödel a mis au
point cet argument, qui, dans son esprit, établit contre Turing la possibilité
de ces « procédures finies non mécaniques ».

Gödel se réfère, dans l’article de Turing, de 1937, « Sur les nombres
calculables » au paragraphe 9 où Turing développe trois arguments visant

19 La première version est publiée dans [Gödel 1972b].
20 Il s’agit de l’item 060164, boîte 11b, dossier 15, intitulé par Gödel « Aufsatz im
‘Entschluss’, Sep-Dec 1963 » La seconde moitié de la même feuille comporte une série
de commentaires en Gablesberger, que C. Dawson a transcrits, mais qui concernent
la théologie comme science exacte, sans rapport avec Turing ou le problème de la
calculabilité.
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à établir que les machines définies précédemment, les « machines de Tu-
ring » permettent en effet de représenter toutes les fonctions calculables.
Ce sont ces arguments qui justifient la thèse que les fonctions calculables
sont les fonctions calculables par une machine de Turing. Dans son pre-
mier, et principal, argument, Turing analyse le calculateur humain (le cal-
culator) pour montrer que chacune de ses opérations peut être reproduite
par une machine de Turing. Mais, pour maintenir l’analogie entre le cal-
culateur humain et les machines à calculer, Turing doit encore poser que :

(30) « the number of states of mind which need be taken into account is finite. [...] If we
admitted an infinity of states of mind, some of them will be ‘arbitrarily close’ and will be
confused » [Turing 1937, p. 136].

Les états possibles d’une machine de Turing sont, par définition, en
nombre fini. La possibilité de considérer le calculateur humain comme
une telle machine exige d’admettre que le nombre des états par les-
quels le calculateur humain peut passer au cours d’un « calcul », d’une
procédure donnée est également fini. Cela revient à limiter la mémoire
du calculateur humain. Les états internes jouent en effet le rôle d’une
mémoire. 21

Or c’est d’abord ce point, cette limitation du nombre des états possibles,
de la mémoire, du calculateur que refuse Gödel (en particulier citation
(28)). On peut concevoir, soutient Gödel, que, à chaque étape de la procé-
dure, le nombre des états par lesquels le calculateur est déjà passé reste fini
mais que la procédure dans son ensemble mette en jeu une infinité d’états.
Nous pouvons donc parler d’une infinité potentielle de l’esprit dont la mé-
moire (les états possibles) est toujours finie mais peut s’enrichir au-delà de
toute borne. Le premier point, pour Gödel, est de montrer que cette in-
finité potentielle est concevable : elle n’est pas un non-sens. Néanmoins,
la possibilité d’attribuer à un esprit « fini » cette « infinité » potentielle dé-
pend du cadre métaphysique dans lequel on se place. La critique de Turing
exige un détour par la métaphysique :

(31) « A briefer way of describing the situation is this : it is perfectly possible that we are ca-
pable of infinitely many well distinguishable mental states although at each moment only
a finite number can have been actualised. In fact, [that] contradicts the ‘finitude’ of the
human mind as little as would eternal life. The latter also presupposes the possibility of

21 Notamment [Kleene 1988, p. 22] et [Sieg 1994, p. 93]. Parce qu’il est dans un état,
ou dans un autre, le calculateur, dans les mêmes circonstances, c’est-à-dire devant le
même symbole sur le ruban, accomplira telle action, ou telle autre. En cela, l’action
du calculateur peut dépendre du passé, des actions et des circonstances antérieures.
La référence à ces états internes permet donc d’introduire une sorte de mémoire dans
le calcul.
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infinitely many well distinguishable experiences in one finite human being. It is only a
materialist prejudice which excludes this because of the finiteness of our head. Moreover in
order to prove that the procedure actually can be carried out a much more profound unders-
tanding of the essence and the working of the human mind » [... Le texte s’interrompt
ici. Papiers Gödel, 8c, 106, 040332].

L’exemple de la vie éternelle vient seulement montrer qu’il est possible
en principe, qu’il est sensé, de donner à un ‘esprit fini’ une infinité poten-
tielle. Cela, continue Gödel, ne devient absurde que dans le cadre d’un
matérialisme qui limiterait la capacité de l’esprit en référence au cerveau.
Ce point est développé dans la suite du texte que Gödel a donné à Wang,
pour son livre de 1974.

(32) « In our discussions, Gödel added the following. Turing’s argument becomes valid un-
der two additional assumptions, which today are generally accepted, namely : 1. There is
no mind separate from matter. 2. The brain functions basically like a digital computer (2.
may be replaced by : 20 The physical laws, in their observable consequences, have a finite
limit of precision.) However, while Gödel thinks that 2 is very likely and 20 practically
certain, he believes that 1. is a prejudice of our time, which will be disproved scientifically
(perhaps by the fact that there aren’t enough nerve cells to perform the observable operations
of the mind) » [Wang 1974, p. 326]. 22

La capacité, la mémoire (le nombre des états possibles) de l’esprit hu-
main est-elle bornée ? Cette remarque de Turing, que le nombre des états
possibles du calculateur humain est fini, dépend selon Gödel d’hypothèses
« matérialistes ». C’est, du reste, manifeste dans l’article de 1937, où Turing
fait immédiatement suivre sa remarque sur les « états d’esprit » du calcula-
teur par une discussion concernant leurs « contre-parties physiques ». De
façon générale, ce « matérialisme », qui, pour Gödel, vient parasiter cette
question de la calculabilité, commence par corréler l’esprit au cerveau (à
chaque état de l’esprit doit correspondre un état du cerveau), et montre

22 Ce texte est de la main de Gödel (Papiers Gödel, 8c, 117, 040393). Gödel ajoute
que « le mécanisme en biologie est un préjudice de notre temps qui sera réfuté ». On
montrera, pense Gödel, que la constitution d’un organisme comme le corps humain
purement selon les lois physiques est aussi peu probable que « la séparation de l’at-
mosphère en ses composants » [Wang 1974, p. 326]. Voir également, papiers Gödel,
boîte 20, où se trouve une autre version du texte de Wang, corrigée de la main de Gö-
del. Ce rejet du mécanisme en biologie est une conviction ancienne de Gödel, dont on
peut se demander quel rôle elle joue ensuite dans la critique de la thèse de Turing, à
propos des procédures mathématiques. Ainsi, Gödel se demande autour de 1942 : « Ist
der Unterschied des Lebendigen vom Leblosen vielleicht, daß sich seine Wirkungsgesetze nicht in
‘mechanischen’ Regeln fassen, d.h. nicht ‘formalisieren’ lassen ? [...] die dem Vitalismus entge-
gengesetzte Anschauung behauptet also einfach : alles Lebendige ist tot » [Cahier philosophique
XI, p. 44, transcription C. Dawson].
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ensuite que le cerveau ne peut prendre qu’un nombre fini d’états diffé-
rents. Gödel accepte ce deuxième point, sur le cerveau, mais refuse la thèse
d’un « parallélisme » esprit/cerveau, qu’il dénonce comme une illusion. 23

Il évoque, dans la citation (32), une réfutation empirique, qui montrerait
que les états possibles de ce système fini qu’est le cerveau, sont moins nom-
breux que les opérations élémentaires que l’on peut distinguer dans l’es-
prit. Or le fait de détacher ainsi l’esprit du cerveau permettrait de don-
ner à celui-là une infinité potentielle. Cette infinité potentielle de l’esprit
humain, avec son soubassement métaphysique, anti-matérialiste, apparaı̂t
également dans la note suivante :

(33) « G. seriously questions (1) [that there is no mind separate from matter]. For all we
know mind or [Wang écrit : « spirits », Gödel remplace le terme par : « the ego »]
may be distinct from the brain and, in the course of an infinite time, be capable of an
infinite number of distinguishable states. The brain may be essentially a digital computer
[Gödel ajoute « temporally » dans le texte de Wang] connected with a finite mind,
capable of unlimited [Gödel ajoute « systematic non mechanical » dans le texte de
Wang] development. It is not denied that the mind is finite and capable of only finitely
many states at each stage of its development. This observation points up to a possible world
(which may be the real world) in which there would for finite minds exist mental procedures
not equivalent to any Turing machine » [Papiers Gödel, Boı̂te 20, dossier Wang].

Ainsi, Gödel accepte que le cerveau est une machine de Turing de sorte
que, dans le cas même où sa vie durerait un temps infini, le cerveau ne
serait capable que d’un nombre fini d’états internes. En revanche, Gödel
semble soutenir que l’esprit est indépendant (ou, pour une part, indépen-
dant) du cerveau de sorte que, si, à chaque étape, l’esprit reste fini, c’est-
à-dire n’est encore passé que par un nombre fini d’états mentaux, il est
susceptible d’une infinité d’états, au cours d’un développement analogue
à une vie éternelle. L’énoncé de Turing (cité plus haut (30)), que le calcu-
lateur humain comme la machine ne dispose que d’un nombre fini d’états
possibles, ou d’une mémoire finie, ne se justifie que sous l’hypothèse, ou
bien d’une sorte d’identité ou bien d’une sorte de parallélisme entre l’es-
prit et le cerveau. L’argument de Gödel est d’abord négatif. Il montre que
l’énoncé de Turing dépend d’un cadre métaphysique, un cadre « matéria-
liste », qui n’est pas justifié par Turing et qui, pour Gödel, ne va pas de soi.
Mais Gödel vise ensuite bien à établir, dans un autre cadre métaphysique,

23 Également [Wang 1974, p. 190 et p. 198].
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que l’esprit est capable d’une infinité d’états et peut par conséquent réa-
liser des procédures, qui ne pourraient pas être reproduites par une ma-
chine de Turing. La discussion avec Turing est liée aux convictions méta-
physiques, voire religieuses, de Gödel. J. C. Webb [Webb 1990, p. 299] in-
dique que l’argument fait appel à un « esprit infini ». Il s’agit plus exacte-
ment d’un esprit potentiellement infini, un esprit qui, tout en restant tou-
jours fini, se développe au-delà de toute borne.

On peut se demander dans quelle mesure la critique de Gödel adressée
à Turing est justifiée. En effet, comme l’a montré W. Sieg [Sieg 2006, p. 98],
[Sieg 1994, p. 15 et suiv.], Turing dans ce passage de l’article de 1937 ne
vise pas à restreindre les possibilités de l’esprit en général, pour montrer
que les processus de l’esprit sont toujours des procédures mécaniques, sus-
ceptibles d’être représentées par une machine de Turing. Turing cherche
uniquement à montrer que l’esprit, au cours de ce qu’on appelle un cal-
cul, est une telle machine, sans vouloir nier qu’il puisse exister dans l’es-
prit d’autres processus, d’autres facultés qui ne soient pas des calculs. Ainsi,
l’article sur les logiques ordinales distingue dans le raisonnement mathé-
matique deux facultés : « l’ingénuité », d’une part, qui consiste dans un
savoir-faire logique, à savoir appliquer les règles logiques le mieux possible,
et que rend en principe superflue l’existence (au moins virtuelle) de ces
machines capables de déduire les théorèmes d’une logique ; « l’intuition »,
d’autre part, qui ne se résume pas dans un calcul, l’application de règles,
mais « consiste à faire des jugements spontanés, qui ne sont pas le résultat
d’une suite consciente de raisonnements » [Turing 1939, p. 208]. Cette fa-
culté d’intuition peut alors se représenter par un « oracle », un dispositif
qui est accouplé à la machine. Cette faculté d’intuition, cet oracle, dont on
peut seulement « dire qu’il n’est pas une machine » [Turing 1939, p. 167],
semble alors représenter une composante de l’esprit qui échappe à l’ana-
lyse que proposait Turing en 1937. Celle-ci ne vise donc pas à élucider le
fonctionnement de l’esprit en général, mais seulement le fonctionnement
de l’esprit dans l’une de ses activités, le calcul. La critique de Gödel (dans
la première phrase de la citation (29)) passe à côté de la lettre du texte de
Turing. Cela dit, la thèse de Gödel est que l’esprit, parce que il est capable
d’un développement indéfini, est susceptible de réaliser des procédures
qui dépassent les machines de Turing. C’est de cette thèse, qu’elle contre-
dise ou non le texte de Turing, qu’il faut discuter.

Une machine, définie de façon analogue aux machines de Turing mais
susceptible de prendre un nombre infini d’états internes et disposant
d’une liste infinie d’instructions relatives à ces états, peut « calculer »
n’importe quelle fonction entière, n’importe quel nombre réel, ou écrire
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n’importe quelle suite de formules et, par exemple, toutes les formules
vraies de l’arithmétique élémentaire dans un modèle donné. Cependant,
une telle machine, personne (sinon un dieu) ne pourrait la programmer
ou en comprendre le programme, puisque celui-ci comporte une infinité
d’instructions. C’est pourquoi du reste, dans l’article de 1937, Turing qui
ne considère que des calculs « finis », définis par une liste finie d’instruc-
tions, passe très vite sur cette question du nombre des états possibles du
calculateur humain. 24 Cela dit, on peut bien sûr imaginer que l’esprit
humain est une machine infinie avec un nombre infini d’états possibles
et qui suit un programme infini, une liste infinie d’instructions relatives
à ces états. Cet esprit ne serait pas très différent de l’automate spirituel
que décrit Leibniz. 25 Et il pourrait, purement selon les lois qui régissent
son fonctionnement, écrire une suite de formules, infinie, qu’aucune
machine de Turing ne pourrait écrire. Cependant, dans ces passages
que nous étudions, Gödel ne dit pas que l’esprit est pris dans une telle
procédure, qui resterait comme inconsciente et qui, par exemple, le
conduirait comme malgré lui à écrire les unes à la suite des autres toutes
les formules vraies de l’arithmétique élémentaire ou de la théorie des
ensembles. Lorsque Gödel parle d’un développement de l’esprit (dans la
citation (29)), c’est plutôt, et comme dans les « Remarques » de 1946 déjà
évoquées, que l’esprit, d’abord comparable à une machine de Turing,
déduisant des formules dans un système donné, est toujours capable d’in-
troduire de nouveaux axiomes et, par conséquent, d’étendre les systèmes
dans lesquels il travaille suivant une procédure que ne peut pas reproduire
une machine de Turing. Admettons que l’argument (qu’il soit celui de
Turing ou non), qui dirait qu’un esprit fini ne peut pas faire autre chose
que des calculs mécaniques, est réfuté. Admettons, pour suivre Gödel,
qu’un esprit fini est susceptible au cours d’un temps infini de passer par
une infinité d’états distincts. Bref, l’esprit en principe peut conduire des
procédures qui ne sont pas réalisables sur une machine de Turing. Mais
il reste à savoir comment, selon quelles règles, selon quelle méthode,
partant d’un système donné dans lequel le calculateur humain est ana-
logue à une machine de Turing, il est possible d’élargir ce système, avec

24 Turing [Turing 1937, p. 137] remarque simplement (dans le cas où l’on ne dis-
pose que d’une liste d’instructions finie) : « This restriction is not one which seriously affects
computation ».
25 Du moins, l’automate spirituel comporte bien une infinité d’états possibles, et
ses lois ne s’expriment pas sous la forme d’une liste finie d’instructions, [notamment
[Leibniz 1969], § 403 et 1765, II, XII, § 17]. Sur l’écart entre la notion leibnizienne
d’automate spirituel et la machine de Turing, cf. [Cassou-Noguès 2002].
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de nouveaux axiomes selon une procédure qui n’est pas représentable
par une machine de Turing. Gödel exige que la procédure qui guide
ce développement soit déterministe. Cela est sans doute sous-entendu
dans le terme « systématique » des citations (29) et (33). Mais, de façon
explicite :

(34) « Note also that the term well-defined is supposed to imply that in any application of a
procedure the result as well as the intermediate stages depend only on the initial elements
and on no other circumstance » [Papiers Gödel, 9, 147, 040486].

Les règles qui déterminent ces procédures « bien définies » mais non
mécaniques doivent être univoques, prescrivant sans ambiguı̈té une suite
d’actions (que ce soit pour le « calcul » d’une fonction entière ou l’exten-
sion d’un système formel). La question maintenant est de savoir de quelle
nature doivent être ces règles. Comment énoncer des règles univoques
mais que ne pourrait suivre aucune machine de Turing ? Gödel, de façon
très générale, renvoie au sens. Ces règles, des procédures non mécaniques,
devront faire appel au « sens », alors que les règles mécaniques ne portent
que sur les symboles, abstraction faite de leur sens. C’est ce que montre
par exemple la citation (19). De même, le Postscriptum de 1964 indique
que ces procédures finies non mécaniques « impliquent l’usage de termes
abstraits sur la base de leur sens » [Gödel 1934, p. 370].

Ce sens, invoqué comme moteur des procédures non mécaniques, dé-
pend, dans la perspective de Gödel, d’une intuition des concepts. Comme
cela apparaı̂t déjà dans les « Remarques » de 1946, Gödel est convaincu
qu’une intuition suffisamment claire des concepts fondamentaux des ma-
thématiques fournirait d’elle-même une procédure précise pour formuler
de nouveaux axiomes, étendre indéfiniment nos systèmes formels jusqu’à
obtenir une propriété de complétude et, par conséquent, selon une pro-
cédure qu’aucune machine ne peut suivre. De la même façon, la première
version de l’argument donné contre Turing [Gödel 1972b] renvoie de fa-
çon assez générale à des « concepts abstraits ». 26 La deuxième version (ci-
tation (29)) ouvre une autre perspective. C’est que, pour obtenir une telle
procédure, il faudrait remplacer le concept d’ensemble à la base de nos
mathématiques, par un autre plus général, comme le serait celui de classe
propre ou, son corrélat, le concept de concept. Le concept de concept a
cette propriété, selon Gödel, de s’appliquer à lui-même : le concept de
concept est un concept. Si l’on considère l’extension de ce concept, il fau-
drait dire qu’elle appartient à elle-même. Le concept de concept semble

26 [Gödel 1972b, p. 306] : « we understand abstract terms more and more precisely as we go
on using them, and [...] more and more abstract terms enter the sphere of our understanding ».



104 P. CASSOU-NOGUÈS

plus général que celui d’ensemble. On peut dire que chaque ensemble cor-
respond à un concept, mais il y a des concepts dont l’extension n’est pas un
ensemble. On pourrait parler de classe, en admettant alors qu’une classe
puisse appartenir à elle-même. Gödel envisage que le concept de concept,
ou celui de classe en ce sens, puisse remplacer celui d’ensemble, comme
base de nos mathématiques. Les deux citations suivantes, des brouillons
pour la deuxième moitié de la citation (29), développent cette idée : la
définition d’une procédure réglée non mécanique dépend de l’intuition
d’un concept donnant lieu indéfiniment à de nouveaux axiomes, comme
le concept d’ensemble mais plus large que celui-ci.

(35) « Several more primitive ideas now appear on the horizon destined for the same deve-
lopment [as the concept of set]. Two instances are the self-reflexive concept of proper class
and the most general concept of concept (and the concept of true analogue). It would be
furthermore an achievement of unprecedented importance since it would imply an acce-
leration so that developments of whole centuries would be compressed into a few years in
analogy to the development of modern technology which has achieved more in a 100 years
than was achieved in the preceding 6000 years » [Papiers Gödel, 8c, 117, 040395].

(36) « It is moreover conceivable that someday one may hit upon an abstract concept much
more clearly discernible than the general concept of set so that the corresponding procedure
of developing on its basis much more abstract concepts and their evident mutual relation-
ships would from the beginning be unambiguous and proceed without much learning by
use. All this may sound fantastic and unfounded. However, note that mere logical possibi-
lities are sufficient to disprove the conclusiveness of an argument in logic or mathematics.
Nor is it inconceivable, although hard to imagine at present, that we should develop a suf-
ficiently clear concept of our mind to see that such a procedure can be continued indefinitely
with well-determined results. Note that something like this actually seems to happen in the
procedure of forming higher and higher axioms of infinity » [Papiers Gödel, 9b, 147,
040488]. 27

Gödel ne précise pas ce qu’il entend par « analogue véritable », et
c’est à ma connaissance la seule occurrence de cette expression dans ses
notes. L’important est que la possibilité d’une extension indéfinie de nos
systèmes d’axiomes dans une procédure univoque et non mécanique,
non reproductible par une machine de Turing, semble dépendre de la
substitution, ou de l’adjonction, au concept d’ensemble d’un concept
plus général, comme le concept de concept ou de classe propre. La cita-
tion (35) indique également que cette perspective reste, dans l’esprit de
Gödel, lointaine : son actualisation correspondrait à une transformation
complète de nos mathématiques.

27 On voit dans ces deux citations que Gödel n’a manifestement pas en tête un prin-
cipe de réflexion analogue à ceux de Turing (1938) et surtout Feferman [1991].
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Maintenant, la saisie précise du sens d’un concept, comme elle est
exigée pour cette extension non mécanique de nos systèmes formels,
repose sur une réflexion sur nos actes, notre pensée, dans l’intuition de
ce concept. C’est ce qui ressort en particulier de la référence à la phéno-
ménologie de Husserl dans la conférence de 1961. Gödel y explique que
la production de nouveaux axiomes suppose une clarification du sens des
concepts et que celle-ci, comme le veut la phénoménologie dans la lecture
qu’en fait le logicien, exige une analyse réflexive de nos actes dans l’usage
des concepts. Et Gödel conclut que, précisément, c’est ce processus, qui
suppose par conséquent un retour réflexif sur la pensée même, « qu’une
machine ne peut pas imiter » [Gödel 1961/?, p. 384-385].

Cette référence à la phénoménologie comme méthode pour la clarifica-
tion du sens éclaire un point que la comparaison des deux versions de l’ar-
gument élaboré contre Turing, comme d’autres notes de Gödel, semble
rendre ambigu. Gödel lie la découverte d’une procédure non mécanique à
une meilleure compréhension tantôt des concepts mathématiques, tantôt
de l’esprit humain, de son essence et de son fonctionnement. C’est, pour
Gödel, que l’une ne va pas sans l’autre. Et, en dernier ressort, c’est dans
une réflexion phénoménologique que Gödel cherche cette analyse de l’es-
prit qui doit donner à la fois une clarification des concepts mathématiques
et la formulation d’une procédure non mécanique. Ainsi, à la fin de la note
mentionnée plus haut (citation (27)) sur ces « procédures de pensée » qui
fourniraient des fonctions « calculables » mais « non mécaniques », Gödel
remarque :

(37) « This insight is based on a psychological (phenomenological) reflection, whose fruitful-
ness for the foundations of mathematics is thereby clearly demonstrated » [Papiers Gödel,
9b, 141, 040405].

Ces procédures de pensée, bien définies mais non mécaniques, dé-
pendent donc d’une réflexion phénoménologique et, plus largement,
de cette faculté qu’a la pensée, selon Gödel, de pouvoir se réfléchir et se
connaı̂tre elle-même. C’est un thème qui apparaı̂t également dans une
lettre à Tillich. 28

Ces remarques de Gödel, autour de la référence au sens, ne résolvent
cependant pas les difficultés auxquelles est confronté le logicien dans sa
critique de Turing. En fait, il y a deux problèmes exactement symétriques.
On l’a vu, Gödel soutient que l’esprit, tout en restant fini, est capable d’un
développement indéfini, de sorte que, si on le compare à une machine
de Turing, on peut dire que le nombre des états par lesquels il passe

28 Cf. [Atten 2006].
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augmente avec le temps et que, dans l’ensemble de son développement,
le nombre de ces états est infini. Une « machine », analogue aux machines
de Turing mais possédant une infinité d’états internes et une liste infinie
d’instructions, peut écrire n’importe quelle suite de formules ou calculer
n’importe quelle fonction entière. Si l’esprit, dans le cours de son déve-
loppement est comparable à une telle machine, il est en principe capable
de procédures qui ne sont pas mécaniques au sens de Turing. Mais la
question reste de savoir comment formuler une procédure bien détermi-
née, que nous puissions réellement appliquer et qui soit pourtant non
mécanique. Par exemple, partant d’un système donné, un système formel
de théorie des ensembles, comment, c’est-à-dire selon quelles règles, peut-
on l’étendre de façon à obtenir une série d’axiomes, bien définie mais
qu’aucune machine ne puisse écrire et pour laquelle vaudrait un résultat
de complétude ? La thèse qu’une telle procédure doit faire intervenir
le sens des concepts est un leitmotiv, dans les notes de Gödel, mais elle
n’apporte pas de réponse. La référence au sens dans la définition de la
procédure ne donne aucune assurance sur le caractère non mécanique de
celle-ci. Ce n’est pas, évidemment, parce que l’on enchaı̂ne des axiomes
(ou des phrases en général) en s’appuyant sur leur sens qu’une machine
ne peut pas écrire les mêmes axiomes (les mêmes phrases) en procédant
en quelque sorte à l’aveugle, selon un programme, ou des règles qui ne
prennent en compte que les symboles.

Mais, inversement, s’il est entendu que l’esprit, au cours de son déve-
loppement, est comparable à une « machine » susceptible de passer par
une infinité d’états et que, dans ce cas, l’esprit est en principe capable de
procédures qui ne sont pas représentables par une machine de Turing,
pourquoi la définition d’une telle procédure devrait-elle forcément faire
référence au sens ? Partant d’un système donné, demandons à nouveau
comment, c’est-à-dire encore une fois selon quelles règles, ajouter de
nouveaux axiomes (indéfiniment) pour obtenir un système complet. Ima-
ginons que ces règles, qui appartiennent de toute façon à un métalangage,
soient formulées comme des phrases dans le langage naturel. Ces phrases,
en français disons, donnent certaines instructions permettant, à chaque
étape, pour chaque système obtenu, de formuler encore de nouveaux
axiomes. Pourquoi ces règles, ces phrases en français, devraient-elles s’ap-
puyer sur le sens des symboles du système et ne peuvent-elles consister
simplement en une série d’instructions ne prenant en considération que
les symboles eux-mêmes ?

Il faut revenir à l’interprétation par Gödel de la thèse de Turing. Des
règles, comme celles qui définissent un système formel, qui ne portent
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que sur les symboles, sans considération de leur sens, définissent une
procédure formelle, mécanique au sens où Gödel l’entendait avant Tu-
ring. Et c’est, d’après Gödel, la thèse de Turing : une telle procédure est
représentable par une machine de Turing. La citation (19) montre que
Gödel accepte cette thèse — une procédure mécanique en ce sens peut
être représentée par une machine de Turing —, alors même qu’il critique
l’un des arguments de l’article de Turing. La justification de cette thèse
semble, dans les textes de Gödel, ne dépendre que d’une intuition du
concept de procédure « mécanique » ou faisant abstraction du sens des
symboles. Quoi qu’il en soit, la conséquence de cette thèse est qu’une
procédure qui ne serait pas représentable par une machine de Turing
doit s’appuyer sur le sens. La citation (28) semble montrer que Gödel
a toujours été convaincu de l’existence de procédures non mécaniques,
de procédures définies par des règles dans lesquelles le sens est irréduc-
tible, c’est-à-dire que l’on ne peut pas remplacer par des règles qui ne
porteraient que sur les symboles abstraction faite de leur sens. Cela est du
moins clair dans les « Remarques » de 1946, qui évoquent l’existence de
procédures pour l’extension des systèmes formels, bien définies mais non
mécaniques et dépendant, plutôt que de règles portant sur les symboles,
de l’intuition d’un concept. L’ « argument » que Gödel met au point en
1964, n’ajoute presque rien de ce point de vue. Il est négatif, visant à
réfuter un énoncé que Gödel prête à Turing, sans doute à tort, à savoir
que la pensée mathématique ne peut s’exprimer que dans des procédures
mécaniques. Cet énoncé, montre Gödel, s’appuie sur un cadre métaphy-
sique, un certain matérialisme, qui n’est pas justifié et que l’on n’est pas
tenu d’accepter. Gödel, après cet argument, considère l’esprit comme
une sorte de machine potentiellement infinie. Dans la mesure où cette
machine, à chaque étape de son développement, n’a utilisé qu’un nombre
fini d’états internes (ou, si l’on veut, n’a jamais qu’une mémoire finie),
Gödel peut qualifier les procédures non mécaniques de « finies ». Mais cet
argument ne résout en rien le problème auquel Gödel est déjà confronté
en 1946 : comment fixer une procédure, bien définie, avec des règles que
le mathématicien puisse suivre mais qu’aucune machine de Turing ne
puisse appliquer ? Non seulement l’argument donné contre Turing ne
répond pas à ce problème, mais il tendrait plutôt à mettre en question
la thèse même que Gödel tire de l’article de Turing et l’identification
entre procédure mécanique et machine de Turing. Du moins, Gödel
attaque l’argumentation par laquelle Turing justifiait sa propre thèse et
sa définition des procédures « finies », sans chercher à lui substituer une
autre argumentation. C’est apparemment que, dans l’esprit de Gödel,
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cette tâche est inutile. Si l’on en croit les citations (20), (21), (22), (23),
il faudrait considérer la thèse de Turing telle que la formule Gödel (une
procédure « mécanique », qui fait abstraction du sens des symboles, est
représentable par une machine de Turing) et sa conséquence immédiate
(une procédure non représentable par une machine de Turing s’appuie
sur le sens des symboles) comme des propositions évidentes qui ne dé-
pendent que de l’intuition du concept de procédure mécanique, concept
qui a une existence en soi (notamment, citation (23)). Aucune de ces deux
propositions ne semble être autrement justifiée. Mais Gödel, sans doute,
n’a jamais prétendu être en mesure de décrire une telle procédure, qui
exigerait une transformation profonde de notre culture mathématique :

(38) « It should be noted that the realization of such procedures [non mechanical] would
require /a development of the faculties of the human mind well beyond the stage that has
been achieved (or potentially achieved) in our culture (the science of) today /a substantial
improvement in our understanding of the abstract ideas either beforehand or continuously
during the application of the procedure.

A clear knowledge of the feasibility and successfulness of such procedures would even
presuppose a development of our culture (the science of) today /a very substantial improve-
ment (progress, advance) in our understanding of the abstract ideas of mathematics and
of the process of understanding itself.

Such a procedure is certainly not within reach before a very substantial advance in our
understanding of the abstract ideas of mathematics has taken place » [Papiers Gödel 8c,
106, 040332].
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[Gödel, Works, t. IV, p. 361–366].

Davis (Martin)
[1965] The Undecidable. Basic Papers on Undecidable Propositions, Unsolvable Pro-

blems and Computable Functions, Ed. by Martin Davis, Hewlett, N.Y. : Ra-
ven Press, 1965.
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others, éd., The Kleene Symposium, Amsterdam : North-Holland, 1980.
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