This article explores some theoretical aspects of a recent nonparametric method for estimating a univariate regression function of bounded variation. The method exploits the Jordan decomposition which states that a function of bounded variation can be decomposed as the sum of a non-decreasing function and a non-increasing function. This suggests combining the backfitting algorithm for estimating additive functions with isotonic regression for estimating monotone functions. The resulting iterative algorithm is called Iterative Isotonic Regression (I.I.R.). The main result in this paper states that the estimator is consistent if the number of iterations grows appropriately with the sample size . The proof requires two auxiliary results that are of interest in and by themselves: firstly, we generalize the well-known consistency property of isotonic regression to the framework of a non-monotone regression function, and secondly, we relate the backfitting algorithm to von Neumann’s algorithm in convex analysis. We also analyse how the algorithm can be stopped in practice using a data-splitting procedure.
DOI : 10.1051/ps/2014012
Keywords: Nonparametric statistics, isotonic regression, additive models, metric projection onto convex cones
Guyader, Arnaud 1 ; Hengartner, Nick 2 ; Jégou, Nicolas 3 ; Matzner-Løber, Eric 3
@article{PS_2015__19__1_0,
author = {Guyader, Arnaud and Hengartner, Nick and J\'egou, Nicolas and Matzner-L{\o}ber, Eric},
title = {Iterative isotonic regression},
journal = {ESAIM: Probability and Statistics},
pages = {1--23},
year = {2015},
publisher = {EDP Sciences},
volume = {19},
doi = {10.1051/ps/2014012},
mrnumber = {3374866},
zbl = {1392.62117},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ps/2014012/}
}
TY - JOUR AU - Guyader, Arnaud AU - Hengartner, Nick AU - Jégou, Nicolas AU - Matzner-Løber, Eric TI - Iterative isotonic regression JO - ESAIM: Probability and Statistics PY - 2015 SP - 1 EP - 23 VL - 19 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ps/2014012/ DO - 10.1051/ps/2014012 LA - en ID - PS_2015__19__1_0 ER -
%0 Journal Article %A Guyader, Arnaud %A Hengartner, Nick %A Jégou, Nicolas %A Matzner-Løber, Eric %T Iterative isotonic regression %J ESAIM: Probability and Statistics %D 2015 %P 1-23 %V 19 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ps/2014012/ %R 10.1051/ps/2014012 %G en %F PS_2015__19__1_0
Guyader, Arnaud; Hengartner, Nick; Jégou, Nicolas; Matzner-Løber, Eric. Iterative isotonic regression. ESAIM: Probability and Statistics, Tome 19 (2015), pp. 1-23. doi: 10.1051/ps/2014012
and , Monotone spectral density estimation. Ann. Stat. 39 (2011) 418–438. | MR | Zbl
, , , and , An empirical distribution function for sampling with incomplete information. Ann. Math. Stat. (1955) 641–647. | MR | Zbl
R.E. Barlow, D.J. Bartholomew, J.M. Bremner and H.D. Brunk, Statistical inference under order restrictions: Theory and application of isotonic regression. John Wiley & Sons (1972). | MR | Zbl
and , On the Convergence of von Neumann’s Alternating Projection Algorithm for Two Sets. Set-Valued Anal. 1 (1993) 185–212. | MR | Zbl
and , Dykstra’s alternating projection algorithm for two sets. J. Approx. Theory 79 (1994) 418–443. | MR | Zbl
and , Active set algorithms for isotonic regression; An unifying framework. Math. Program. 47 (1990) 425–439. | MR | Zbl
H.D. Brunk, Estimation of isotonic regression. Cambridge University Press (1970) 177–195. | MR
H.D. Brunk, Maximum likelihood estimates of monotone parameters. Ann. Math. Stat. (1955) 607–616. | MR | Zbl
V.V. Buldygin and Y.V. Kozachenko, Metric Characterization of Random Variables and Random Processes. American Mathematical Society (1972). | MR | Zbl
, and , Linear smoothers and additive models. Ann. Stat. 17 (1989) 453–510. | MR | Zbl
F. Deutsch, The method of alternating orthogonal projections. Approximation Theory, Spline Functions and Applications, edited by S.P. Singh (1991) 105–121. | MR | Zbl
, On the Lp-error of monotonicity constrained estimators. Ann. Stat. 35 (2007) 1080–1104. | MR | Zbl
, An isotonic regression algorithm. J. Stat. Plann. Inference 5 (1981) 355–363. | MR | Zbl
J.H. Friedman and W. Stuetzle, Projection pursuit regression. J. Amer. Stat. Assoc. (1981) 817–823. | MR
, , and , A Geometrical Approach to Iterative Isotone Regression. Appl. Math. Comput. 227 (2014) 359–369. | MR | Zbl
L. Györfi, M. Kohler, A. Kryzak and H. Walk, A distribution-free theory of nonparametric regression. Springer-Verlag, New York (1990). | MR | Zbl
, and , On consistency in monotonic regression. Ann. Stat. 1 (1973) 401–421. | MR | Zbl
T.J. Hastie and R.J. Tibshirani, Generalized additive models. Chapman & Hall/CRC (1990). | MR | Zbl
and , On the backfitting algorithm for additive regression models. Statistica Neerlandica 47 (1993) 43–57. | MR | Zbl
and , Rate optimal estimation with the integration method in the presence of many covariates. J. Multivar. Anal. 95 (1999) 246–272. | MR | Zbl
, and , Optimal estimation in additive regression models. Bernoulli 12 (2006) 271–298. | MR | Zbl
, and , A computationally efficient oracle estimator for additive nonparametric regression with bootstrap confidence intervals. J. Comput. Graph. Stat. 8 (1999) 278–297. | MR
, The min-max algorithm and isotonic regression. Ann. Stat. 11 (1983) 467–477. | MR | Zbl
and , Additive isotone regression. In: Asymptotics: Particles, Processes and Inverse Problems, Lect. Notes Monogr. Series 55 (2007) 179–195. | MR | Zbl
, and , The existence and asymptotic properties of a backfitting projection algorithm under weak conditions. Ann. Stat. 27 (1999) 1443–1490. | MR | Zbl
and , On the Degrees of Freedom in Shape-Restricted Regression. Ann. Stat. 28 (2000) 1083–1104. | MR | Zbl
, Asymptotic properties of backfitting estimators. J. Multivar. Anal. 73 (2000) 166–179. | MR | Zbl
and , Fitting a bivariate additive model by local polynomial regression. Ann. Stat. 25 (1997) 186–211. | MR | Zbl
T. Robertson, F.T. Wright and R.L. Dykstra, Order Restricted Statistical Inference. Wiley, New York (1988). | MR | Zbl
, and , Consistency for the least squares estimator in nonparametric regression. Ann. Stat. 24 (1996) 2513–2523. | MR | Zbl
S. van de Geer, Empirical Process in M-Estimation. Cambridge University Press (2000). | Zbl
Cité par Sources :






