We provide an alternative algebraic and geometric approach to the results of [I. Bailleul, Probab. Theory Related Fields 141 (2008) 283-329] describing the asymptotic behaviour of the relativistic diffusion.
Keywords: random walks on groups, Poisson boundary, special relativity, causal boundary
@article{PS_2010__14__16_0,
author = {Bailleul, Ismael and Raugi, Albert},
title = {Where does randomness lead in spacetime ?},
journal = {ESAIM: Probability and Statistics},
pages = {16--52},
year = {2010},
publisher = {EDP Sciences},
volume = {14},
doi = {10.1051/ps:2008021},
mrnumber = {2640366},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ps:2008021/}
}
TY - JOUR AU - Bailleul, Ismael AU - Raugi, Albert TI - Where does randomness lead in spacetime ? JO - ESAIM: Probability and Statistics PY - 2010 SP - 16 EP - 52 VL - 14 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ps:2008021/ DO - 10.1051/ps:2008021 LA - en ID - PS_2010__14__16_0 ER -
Bailleul, Ismael; Raugi, Albert. Where does randomness lead in spacetime ?. ESAIM: Probability and Statistics, Tome 14 (2010), pp. 16-52. doi: 10.1051/ps:2008021
[1] , Théorie du potentiel sur les graphes et les variétés. École d'été de Probabilités de Saint-Flour XVIII, 1988. Lect. Notes Math. 1427 (1990) 1-112. Springer, Berlin. | Zbl
[2] , Compound Poisson processes and Lévy processes in groups and symmetric spaces. J. Theoret. Probab. 13 (2000) 383-425. | Zbl
[3] and , Lévy flows on manifolds and Lévy processes on Lie groups. J. Math. Kyoto Univ. 33 (1993) 1103-1123. | Zbl
[4] , Poisson boundary of a relativistic diffusion. Probab. Theory Related Fields 141 (2008) 283-329. | Zbl
[5] and , Sur l'équivalent du module de continuité des processus de diffusion, in Séminaire de Probabilités, XXI. Lect. Notes Math. 1247 (1987) 404-427. Springer, Berlin. | Zbl | Numdam
[6] , and , Global Lorentzian geometry, volume 202 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker Inc., New York, second edition (1996). | Zbl
[7] and , Handbook of Brownian motion - facts and formulae. Probability and its Applications. Birkhäuser Verlag, Basel. Second edition (2002). | Zbl
[8] , Lois “zéro ou deux” pour les processus de Markov. Applications aux marches aléatoires. Ann. Inst. H. Poincaré Sect. B (N.S.) 12 (1976) 111-129. | Zbl | Numdam
[9] , Lorentz-invariant Markov processes in relativistic phase space. Ark. Mat. 6 (1966) 241-268. | Zbl
[10] , Asymptotics of some relativistic Markov processes. Proc. Natl. Acad. Sci. USA 70 (1973) 3551-3555. | Zbl
[11] , Géométrie et dynamique Lorentzienne conformes. École Normale Supérieure de Lyon (2002).
[12] , , and , Ideal points in space-time. Proc. Roy. Soc. Lond. Ser. A 327 (1972) 545-567. | Zbl
[13] , Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds. Bull. Amer. Math. Soc. (N.S.) 36 (1999) 135-249. | Zbl
[14] . Une loi des grands nombres pour les groupes de Lie. In Séminaire de Probabilités, I . Exposé No. 8. Dépt. Math. Informat., Univ. Rennes, France (1976).
[15] , The projective geometry of simple cosmological models. Proc. Roy. Soc. Lond. Ser. A 397 (1985) 233-243. | Zbl
[16] and , Stochastic differential equations and diffusion processes. North-Holland Mathematical Library, Vol. 24. North-Holland Publishing Co., Amsterdam, second edition (1989). | Zbl
[17] , and M.G. Šur, Limit theorems for compositions of distributions in the Lobačevskiĭ plane and space. Teor. Veroyatnost. i Primenen. 4 (1959) 432-436. | Zbl
[18] , Lévy processes in Lie groups, volume 162 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (2004). | Zbl
[19] , Mathematical foundations of the calculus of probability. Translated by Amiel Feinstein. Holden-Day Inc., San Francisco, Californie (1965). | Zbl
[20] , Semi-Riemannian geometry. With applications to relativity, volume 103 of Pure Appl. Math. Academic Press Inc. (Harcourt Brace Jovanovich Publishers), New York (1983). | Zbl
[21] , Positive harmonic functions and diffusion, volume 45 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1995). | Zbl
[22] , Étude asymptotique et convergence angulaire du mouvement brownien sur une variété à courbure négative. C. R. Acad. Sci. Paris Sér. A-B 280 Aiii (1975) A1539-A1542. | Zbl
[23] , Fonctions harmoniques sur les groupes localement compacts à base dénombrable. Bull. Soc. Math. France, Mémoire 54 (1977) 5-118. | Zbl | Numdam
[24] , Périodes des fonctions harmoniques bornées. In Seminar on Probability, Rennes, 1978 (French). Exposé No. 10. Univ. Rennes, France (1978).
Cité par Sources :






