The brownian motion model introduced by Dyson [7] for the eigenvalues of unitary random matrices is interpreted as a system of interacting brownian particles on the circle with electrostatic inter-particles repulsion. The aim of this paper is to define the finite particle system in a general setting including collisions between particles. Then, we study the behaviour of this system when the number of particles goes to infinity (through the empirical measure process). We prove that a limiting measure-valued process exists and is the unique solution of a deterministic second-order PDE. The uniform law on is the only limiting distribution of when goes to infinity and has an analytical density.
Keywords: repulsive particles, multivalued stochastic differential equations, empirical measure process
@article{PS_2001__5__203_0,
author = {C\'epa, Emmanuel and L\'epingle, Dominique},
title = {Brownian particles with electrostatic repulsion on the circle : {Dyson's} model for unitary random matrices revisited},
journal = {ESAIM: Probability and Statistics},
pages = {203--224},
year = {2001},
publisher = {EDP Sciences},
volume = {5},
zbl = {1002.60093},
language = {en},
url = {https://www.numdam.org/item/PS_2001__5__203_0/}
}
TY - JOUR AU - Cépa, Emmanuel AU - Lépingle, Dominique TI - Brownian particles with electrostatic repulsion on the circle : Dyson's model for unitary random matrices revisited JO - ESAIM: Probability and Statistics PY - 2001 SP - 203 EP - 224 VL - 5 PB - EDP Sciences UR - https://www.numdam.org/item/PS_2001__5__203_0/ LA - en ID - PS_2001__5__203_0 ER -
%0 Journal Article %A Cépa, Emmanuel %A Lépingle, Dominique %T Brownian particles with electrostatic repulsion on the circle : Dyson's model for unitary random matrices revisited %J ESAIM: Probability and Statistics %D 2001 %P 203-224 %V 5 %I EDP Sciences %U https://www.numdam.org/item/PS_2001__5__203_0/ %G en %F PS_2001__5__203_0
Cépa, Emmanuel; Lépingle, Dominique. Brownian particles with electrostatic repulsion on the circle : Dyson's model for unitary random matrices revisited. ESAIM: Probability and Statistics, Tome 5 (2001), pp. 203-224. https://www.numdam.org/item/PS_2001__5__203_0/
[1] ,, and, A nonlinear SDE involving Hilbert transform. J. Funct. Anal. 165 (1999) 390-406. | Zbl | MR
[2] , Équations différentielles stochastiques multivoques. Sémin. Probab. XXIX (1995) 86-107. | Zbl | MR | Numdam
[3] , Problème de Skorohod multivoque. Ann. Probab. 26 (1998) 500-532. | Zbl | MR
[4] and, Diffusing particles with electrostatic repulsion. Probab. Theory Related Fields 107 (1997) 429-449. | Zbl | MR
[5] , The Wigner semi-circle law and eigenvalues of matrix-valued diffusions. Probab. Theory Related Fields 93 (1992) 249-272. | Zbl | MR
[6] ,, and, The geometry of Brownian curve. Bull. Sci. Math. 2 (1993) 91-106. | Zbl | MR
[7] , A Brownian motion model for the eigenvalues of a random matrix. J. Math. Phys. 3 1191-1198. | Zbl | MR
[8] , Diffusion processes in one dimension. Trans. Amer. Math. Soc. 77 (1954) 1-31. | Zbl | MR
[9] , Brownian motion in a Weyl chamber, non-colliding particles, and random matrices. Ann. Inst. H. Poincaré 35 (1999) 177-204. | Zbl | MR | Numdam
[10] and, Non-colliding Brownian motion on the circle. Bull. London Math. Soc. 28 (1996) 643-650. | Zbl | MR
[11] and, Brownian motion and stochastic calculus. Springer, Berlin Heidelberg New York (1988). | Zbl | MR
[12] and, Stochastic differential equations with reflecting boundary conditions. Comm. Pure Appl. Math. 37 (1984) 511-537. | Zbl | MR
[13] , Stochastic integrals. Academic Press, New York (1969). | Zbl | MR
[14] , Random matrices. Academic Press, New York (1991). | Zbl | MR
[15] , Quelques problèmes liés aux systèmes infinis de particules et leurs limites. Sémin. Probab. XX (1986) 426-446. | Zbl | MR | Numdam
[16] and, A diffusion process in a singular mean-drift field. Z. Wahrsch. Verw. Gebiete 68 (1985) 247-269. | Zbl | MR
[17] , On the convergence of diffusion processes conditioned to remain in a bounded region for large times to limiting positive recurrent diffusion processes. Ann. Probab. 13 (1985) 363-378. | Zbl | MR
[18] and, Continuous martingales and Brownian motion. Springer Verlag, Berlin Heidelberg (1991). | Zbl | MR
[19] and, Interacting Brownian particles and the Wigner law. Probab. Theory Related Fields 95 (1993) 555-570. | Zbl | MR
[20] and, Diffusions, Markov processes and Martingales. Wiley and Sons, New York (1987). | Zbl | MR
[21] , Stochastic differential equations for multidimensional domains with reflecting boundary. Probab. Theory Related Fields 74 (1987) 455-477. | Zbl | MR
[22] , Dyson's model of interacting Brownian motions at arbitrary coupling strength. Markov Process. Related Fields 4 (1998) 649-661. | Zbl
[23] , Topics in propagation of chaos. École d'été Probab. Saint-Flour XIX (1991) 167-251. | Zbl
[24] , Stochastic differential equations with reflecting boundary conditions in convex regions. Hiroshima Math. J. 9 (1979) 163-177. | Zbl | MR
[25] , Lectures on free probability theory. École d'été Probab. Saint-Flour (1998). | Zbl






