@article{PS_1997__1__183_0,
author = {Garnier, Josselin},
title = {Multi-scaled diffusion-approximation. {Applications} to wave propagation in random media},
journal = {ESAIM: Probability and Statistics},
pages = {183--206},
year = {1997},
publisher = {EDP Sciences},
volume = {1},
mrnumber = {1447334},
zbl = {0930.60061},
language = {en},
url = {https://www.numdam.org/item/PS_1997__1__183_0/}
}
TY - JOUR AU - Garnier, Josselin TI - Multi-scaled diffusion-approximation. Applications to wave propagation in random media JO - ESAIM: Probability and Statistics PY - 1997 SP - 183 EP - 206 VL - 1 PB - EDP Sciences UR - https://www.numdam.org/item/PS_1997__1__183_0/ LA - en ID - PS_1997__1__183_0 ER -
Garnier, Josselin. Multi-scaled diffusion-approximation. Applications to wave propagation in random media. ESAIM: Probability and Statistics, Tome 1 (1997), pp. 183-206. https://www.numdam.org/item/PS_1997__1__183_0/
and ( 1965). Handbook of mathematical functions, Dover Publications, New-York.
( 1978). Stopping times and tightness. Ann. Prob. 6 335-340. | Zbl | MR
( 1996) Ph-D thesis. Paris-Sud.
and ( 1984). Asymptotic analysis of P.D.E.'s with wide-band noise disturbances and expansions of the moments. Stochastic analysis and Appl. 2 369-422. | Zbl | MR
( 1985). Therandom Schrödinger equation, in: Ecole d'été de Probabilités de Saint-Flour, Hennequin, P. L., ed. Lecture Notes in Mathematics, Springer.
and ( 1990). Spectral theory of random Schrödinger operators. Birkhauser. | Zbl | MR
( 1960). Field theory of guided waves. Mac Graw-Hill, New York. | MR
and ( 1986). Polynomially decaying transmission for the nonlinear Schrödinger equation in a random medium. J. of Stat. Phys. 43 423-439. | Zbl | MR
and ( 1994). Time delay in random scattering. SIAM J. Appl. Math. 54 443-455. | Zbl | MR
( 1996) Ph-D thesis. Ecole Polytechnique.
( 1968). A circular harmonic computer analysis for rectangular dielectric waveguides. Bell. Syst. Tech. J. 48.
, and ( 1972). Time delay in scattering processes. Helv. Phys. Acta 45 398-426. | MR
and ( 1979). A limit theorem for turbulent diffusion. Comm. Math. Phys. 65 97-128. | Zbl | MR
, and ( 1989). Nonlinearity and localization in one-dimensional random media, in: Disorder and Nonlinearity Bishop, A. R., Campbell, I. K. and Pnevmatikos, S., eds. Springer.
, and ( 1991). Transmission of waves by a nonlinear random medium. J. of Stat. Phys. 63 567-583. | MR
( 1984). Approximation and weak convergence methods for random processes. MIT Press. | Zbl | MR
( 1984). Convergence faible et principe d'invariance pour des martingales à valeurs dans des espaces de Sobolev. Rapport interne CMAP-Ecole Polytechnique. 106.
( 1988). Waves in one-dimensional random media, in: Ecole d'été de Probabilités de Saint-Flour, Hennequin, P. L., ed. Lecture Notes in Mathematics, Springer. | Zbl | MR
, and ( 1976). Martingale approach to some limit theorems, in: Statistical Mechanics andDynamical Systems Ruelle, D., ed. Duke Turbulence Conf. (Duke Univ. Math. Series III, Part VI). | Zbl | MR





