Answering a question of Smale, we prove that the space of C 1 diffeomorphisms of a compact manifold contains a residual subset of diffeomorphisms whose centralizers are trivial.
@article{PMIHES_2009__109__185_0,
author = {Bonatti, Christian and Crovisier, Sylvain and Wilkinson, Amie},
title = {The {C} 1 generic diffeomorphism has trivial centralizer},
journal = {Publications Math\'ematiques de l'IH\'ES},
pages = {185--244},
year = {2009},
publisher = {Springer-Verlag},
address = {Berlin/Heidelberg},
volume = {109},
doi = {10.1007/s10240-009-0021-z},
mrnumber = {2511588},
zbl = {1177.37025},
language = {en},
url = {https://www.numdam.org/articles/10.1007/s10240-009-0021-z/}
}
TY - JOUR AU - Bonatti, Christian AU - Crovisier, Sylvain AU - Wilkinson, Amie TI - The C 1 generic diffeomorphism has trivial centralizer JO - Publications Mathématiques de l'IHÉS PY - 2009 SP - 185 EP - 244 VL - 109 PB - Springer-Verlag PP - Berlin/Heidelberg UR - https://www.numdam.org/articles/10.1007/s10240-009-0021-z/ DO - 10.1007/s10240-009-0021-z LA - en ID - PMIHES_2009__109__185_0 ER -
%0 Journal Article %A Bonatti, Christian %A Crovisier, Sylvain %A Wilkinson, Amie %T The C 1 generic diffeomorphism has trivial centralizer %J Publications Mathématiques de l'IHÉS %D 2009 %P 185-244 %V 109 %I Springer-Verlag %C Berlin/Heidelberg %U https://www.numdam.org/articles/10.1007/s10240-009-0021-z/ %R 10.1007/s10240-009-0021-z %G en %F PMIHES_2009__109__185_0
Bonatti, Christian; Crovisier, Sylvain; Wilkinson, Amie. The C 1 generic diffeomorphism has trivial centralizer. Publications Mathématiques de l'IHÉS, Tome 109 (2009), pp. 185-244. doi: 10.1007/s10240-009-0021-z
[BC] , , Récurrence et généricité, Invent. Math. 158 (2004), p. 33-104 | Zbl | MR
[BD] , , On maximal transitive sets of generic diffeomorphisms, Publ. Math. Inst. Hautes Études Sci. 96 (2002), p. 171-197 | Numdam | Zbl | MR | EuDML
[BDP] , , , A C 1-generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources, Ann. Math. 158 (2003), p. 355-418 | Zbl | MR
[BCW1] , , , C 1-generic conservative diffeomorphisms have trivial centralizer, J. Mod. Dyn. 2 (2008), p. 359-373 | Zbl | MR
[BCW2] Ch. Bonatti, S. Crovisier, and A. Wilkinson, The centralizer of a C 1 generic diffeomorphism is trivial. Preprint arXiv:0705.0225 , 2007. | Zbl | MR
[BCVW] Ch. Bonatti, S. Crovisier, G. Vago, and A. Wilkinson, Local density of diffeomorphisms with large centralizers. Preprint arXiv:0709.4319 , 2007. | Zbl | MR | Numdam
[Bu1] , Centralizers of partially hyperbolic diffeomorphisms, Ergod. Theory Dyn. Sys. 24 (2004), p. 55-87 | Zbl | MR
[Bu2] , Centralizers of area preserving diffeomorphisms on S 2 , Proc. Am. Math. Soc. 133 (2005), p. 1101-1108 | Zbl | MR
[Fi] T. Fisher, Trivial centralizers for Axiom A diffeomorphisms. Preprint. | Zbl | MR
[FRW] , , , On the conjugacy relation in ergodic theory, C. R. Math. Acad. Sci. Paris 343 (2006), p. 653-656 | Zbl | MR
[G] , Groups acting on the circle, L'Enseign. Math. 47 (2001), p. 329-407 | Zbl | MR
[Ko] , Commuting diffeomorphisms, in: Global Analysis, Proc. Sympos. Pure Math. XIV (1970), AMS, Providence | Zbl | MR
[N] A. Navas, Three remarks on one dimensional bi-Lipschitz conjugacies. Preprint arXiv:0705.0034 , 2007.
[PY1] , , Rigidity of centralizers of diffeomorphisms, Ann. Sci. École Norm. Sup. 22 (1989), p. 81-98 | Zbl | MR | Numdam
[PY2] , , Centralizers of Anosov diffeomorphisms on tori, Ann. Sci. École Norm. Sup. 22 (1989), p. 99-108 | Zbl | MR | Numdam
[Pu] , The closing lemma, Am. J. Math. 89 (1967), p. 956-1009 | Zbl | MR
[R] , A minimal positive entropy homeomorphism of the 2-torus, J. Lond. Math. Soc. 23 (1981), p. 537-550 | Zbl | MR
[Sm1] , Dynamics retrospective: great problems, attempts that failed. Nonlinear science: the next decade, Los Alamos, NM, 1990, Physica D 51 (1991), p. 267-273 | Zbl | MR
[Sm2] , Mathematical problems for the next century, Math. Intell. 20 (1998), p. 7-15 | Zbl | MR
[To1] , Generic Morse-Smale diffeomorphisms have only trivial symmetries, Proc. Am. Math. Soc. 65 (1977), p. 145-149 | Zbl | MR
[To2] , Centralizers of C 1-diffeomorphisms, Proc. Am. Math. Soc. 71 (1978), p. 289-293 | Zbl | MR
Cité par Sources :






