In [6], S. Bloch conjectures a formula for the Artin conductor of the ℓ-adic etale cohomology of a regular model of a variety over a local field and proves it for a curve. The formula, which we call the conductor formula of Bloch, enables us to compute the conductor that measures the wild ramification by using the sheaf of differential 1-forms. In this paper, we prove the formula in arbitrary dimension under the assumption that the reduced closed fiber has normal crossings.
@article{PMIHES_2004__100__5_0,
author = {Kato, Kazuya and Saito, Takeshi},
title = {On the conductor formula of {Bloch}},
journal = {Publications Math\'ematiques de l'IH\'ES},
pages = {5--151},
year = {2004},
publisher = {Springer},
volume = {100},
doi = {10.1007/s10240-004-0026-6},
mrnumber = {2102698},
zbl = {1099.14009},
language = {en},
url = {https://www.numdam.org/articles/10.1007/s10240-004-0026-6/}
}
TY - JOUR AU - Kato, Kazuya AU - Saito, Takeshi TI - On the conductor formula of Bloch JO - Publications Mathématiques de l'IHÉS PY - 2004 SP - 5 EP - 151 VL - 100 PB - Springer UR - https://www.numdam.org/articles/10.1007/s10240-004-0026-6/ DO - 10.1007/s10240-004-0026-6 LA - en ID - PMIHES_2004__100__5_0 ER -
Kato, Kazuya; Saito, Takeshi. On the conductor formula of Bloch. Publications Mathématiques de l'IHÉS, Tome 100 (2004), pp. 5-151. doi: 10.1007/s10240-004-0026-6
1. , Cycles on arithmetic surfaces, Compos. Math., 122 (2000), no. 1, 23-111. | Zbl | MR
2. A. Abbes, The Whitney sum formula for localized Chern classes, to appear in J. Théor. Nombres Bordx.
3. and , Ramification groups of local fields with imperfect residue fields II, Doc. Math., Extra Volume Kato (2003), 3-70. | Zbl | MR
4. K. Arai, Conductor formula of Bloch, in tame case (in Japanese), Master thesis at University of Tokyo, 2000.
5. , , and , Projective exterior Koszul homology and decomposition of the Tor functor, Invent. Math., 123 (1996), 123-140. | Zbl | MR
6. , Cycles on arithmetic schemes and Euler characteristics of curves, Algebraic geometry, Bowdoin, 1985, 421-450, Proc. Symp. Pure Math. 46, Part 2, Am. Math. Soc., Providence, RI (1987). | Zbl | MR
7. , , and , ε-constants and Arakelov Euler characteristics, Math. Res. Lett., 7 (2000), no. 4, 433-446. | Zbl
8. , Smoothness, semi-stability and alterations, Publ. Math., Inst. Hautes Étud. Sci., 83 (1996), 51-93. | Zbl | MR | Numdam
9. , Équations différentielles à points singuliers réguliers, Lect. Notes Math. 163, Springer, Berlin-New York (1970). | Zbl | MR
10. P. Deligne and N. Katz, Groupes de monodromie en géométrie algébrique, (SGA 7 II), Lect. Notes Math. 340, Springer, Berlin-New York (1973). | Zbl | MR
11. and , Homologie nicht-additiver Funktoren, Anwendungen, Ann. Inst. Fourier, 11 (1961), 201-312. | Zbl | MR | Numdam
12. K. Fujiwara and K. Kato, Logarithmic etale topology theory, preprint.
13. , Intersection theory, 2nd ed. Ergeb. Math. Grenzgeb., 3. Folge. 2, Springer, Berlin (1998). | Zbl | MR
14. and , Riemann-Roch algebra, Grundlehren Math. Wiss. 277, Springer, Berlin-New York (1985). | Zbl | MR
15. A. Grothendieck with J. Dieudonné, Eléments de géométrie algèbrique IV, Publ. Math., Inst. Hautes Étud. Sci., 20, 24, 28, 32 (1964-1967). | Zbl | MR | Numdam
16. A. Grothendieck et. al., Théorie des topos et cohomologie étale des schemas, (SGA 4), tome 3, Lect. Notes Math. 305, Springer, Berlin-New York (1973). | Zbl | MR
17. A. Grothendieck et. al., Théorie des intersections et théorème de Riemann-Roch, (SGA 6), Lect. Notes Math. 225, Springer, Berlin-New York (1971). | MR
18. , Residues and Duality, Lect. Notes Math. 20, Springer, Berlin-New York (1966). | Zbl | MR
19. , Complexe cotangent et déformations I, Lect. Notes Math. 239, Springer, Berlin-New York (1971). | Zbl | MR
20. , An overview of the work of K. Fujiwara, K. Kato, and C. Nakayama on logarithmic etale cohomology, Cohomologies p-adiques et applications arithmétiques, II. Astérisque, 279 (2002), 271-322. | Zbl | MR | Numdam
21. L. Illusie, Champs toriques et log lissité, preprint (2000).
22. , Critical points of an algebraic function, Invent. Math. 12 (1971), 210-224. | Zbl | MR
23. , Logarithmic structures of Fontaine-Illusie, Algebraic analysis, geometry, and number theory (J.-I. Igusa ed.), Johns Hopkins UP, Baltimore (1989), 191-224. | Zbl | MR
24. , Class field theory, -modules, and ramification on higher dimensional schemes, preprint, unpublished version. | Zbl
25. , Toric singularities, Am. J. Math., 116 (1994), 1073-1099. | Zbl | MR
26. , , and , Artin characters for algebraic surfaces, Am. J. Math., 110 (1988), no. 1, 49-75. | Zbl | MR
27. , A generalization of the imbedding problem of an abstract variety in a complete variety, J. Math. Kyoto Univ., 3 (1963), 89-102. | Zbl | MR
28. , Logarithmic étale cohomology, Math. Ann., 308 (1997), 365-404. | Zbl | MR
29. , Nearby cycles for log smooth families, Compos. Math., 112 (1998), 45-75. | Zbl | MR
30. , l-independence of the trace of monodromy, Math. Ann., 315 (1999), no. 2, 321-340. | Zbl | MR
31. , Elliptic curves and wild ramification, Am. J. Math. 89 (1967), 1-21. | Zbl | MR
32. , Logarithmic geometry and algebraic stacks, Ann. Sci. Éc. Norm. Supér., 36 (2003), 747-791. | Zbl | MR | Numdam
33. , Conjecture de Bloch et nombres de Milnor, Ann. Inst. Fourier, 53 (2003), 1739-1754. | Zbl | MR | Numdam
34. , Notes on the homology of commutative rings, Mimeographed Notes, MIT (1968). | Zbl
35. , On the (co-) homology of commutative rings, in Applications of Categorical Algebra (Proc. Sympos. Pure Math., XVII, New York, 1968, 65-87. Am. Math. Soc., Providence, R.I. | Zbl | MR
36. , Corps locaux, 3rd ed., Hermann, Paris (1968). | Zbl | MR
37. , Représentations linéaires des groupes finis, 3rd ed., Hermann, Paris (1978). | Zbl | MR
38. , Conductor, discriminant, and the Noether formula for arithmetic surfaces, Duke Math. J., 57 (1988), no. 1, 151-173. | Zbl | MR
39. , Self-intersection 0-cycles and coherent sheaves on arithmetic schemes, Duke Math. J., 57 (1988), no. 2, 555-578. | Zbl | MR
40. , Parity in Bloch's conductor formula in even dimension, to appear in J. Théor. Nombres Bordx. | Zbl | Numdam
41. , Weight spectral sequences and independence of ℓ, J. de l'Institut Math. de Jussieu, 2 (2003), 1-52. | Zbl
42. , An introduction to homological algebra, Cambr. Stud. Adv. Math., 38, Cambridge UP, Cambridge (1994). | Zbl | MR
Cité par Sources :






