@article{PMIHES_1964__22__61_0,
author = {Bass, Hyman and Heller, Alex and Swan, Richard G.},
title = {The {Whitehead} group of a polynomial extension},
journal = {Publications Math\'ematiques de l'IH\'ES},
pages = {61--79},
year = {1964},
publisher = {Institut des Hautes Etudes Scientifiques},
volume = {22},
mrnumber = {174605},
zbl = {0248.18026},
language = {en},
url = {https://www.numdam.org/item/PMIHES_1964__22__61_0/}
}
TY - JOUR AU - Bass, Hyman AU - Heller, Alex AU - Swan, Richard G. TI - The Whitehead group of a polynomial extension JO - Publications Mathématiques de l'IHÉS PY - 1964 SP - 61 EP - 79 VL - 22 PB - Institut des Hautes Etudes Scientifiques UR - https://www.numdam.org/item/PMIHES_1964__22__61_0/ LA - en ID - PMIHES_1964__22__61_0 ER -
%0 Journal Article %A Bass, Hyman %A Heller, Alex %A Swan, Richard G. %T The Whitehead group of a polynomial extension %J Publications Mathématiques de l'IHÉS %D 1964 %P 61-79 %V 22 %I Institut des Hautes Etudes Scientifiques %U https://www.numdam.org/item/PMIHES_1964__22__61_0/ %G en %F PMIHES_1964__22__61_0
Bass, Hyman; Heller, Alex; Swan, Richard G. The Whitehead group of a polynomial extension. Publications Mathématiques de l'IHÉS, Tome 22 (1964), pp. 61-79. https://www.numdam.org/item/PMIHES_1964__22__61_0/
[1] , K-theory and Stable Algebra, Publ. math. I.H.E.S., n° 22 (1964). | Zbl | MR | Numdam
[2] et , Le théorème de Riemann-Roch (d'après Grothendieck), Bull. Soc. Math. France, 86 (1959), 97-136. | Zbl | MR | Numdam
[3] , Les déterminants sur un corps non-commutatif, Bull. Soc. Math. France, 71 (1943), 27-45. | Zbl | MR | Numdam
[4] , Units in group rings, Proc. London Math. Soc. (2), 46 (1940), 231-248. | Zbl | MR | JFM
[5] , Homological Dimension of Rings and Modules (mimeo. notes), University of Chicago, 1959.
[6] , Modules projectifs et espaces fibrés à fibre vectorielle, Sém. Dubreil, Paris, 1958. | Zbl | MR | Numdam
[7] , Simple homotopy types, Amer. Jour. Math., 72 (1950), 1-57. | Zbl | MR
[8] and , An elementary proof of the periodicity theorem for the complex linear group (to appear).
[9] and , Vector bundles and homogeneous spaces, Proc. Sympos. Pure Math., Amer. Math. Soc., vol. 3 (1961), 7-38. | Zbl | MR






