Adaptive Cut Selection in Mixed-Integer Linear Programming
Open Journal of Mathematical Optimization, Tome 4 (2023), article no. 5, 28 p.

Cutting plane selection is a subroutine used in all modern mixed-integer linear programming solvers with the goal of selecting a subset of generated cuts that induce optimal solver performance. These solvers have millions of parameter combinations, and so are excellent candidates for parameter tuning. Cut selection scoring rules are usually weighted sums of different measurements, where the weights are parameters. We present a parametric family of mixed-integer linear programs together with infinitely many family-wide valid cuts. Some of these cuts can induce integer optimal solutions directly after being applied, while others fail to do so even if an infinite amount are applied. We show for a specific cut selection rule, that any finite grid search of the parameter space will always miss all parameter values, which select integer optimal inducing cuts in an infinite amount of our problems. We propose a variation on the design of existing graph convolutional neural networks, adapting them to learn cut selection rule parameters. We present a reinforcement learning framework for selecting cuts, and train our design using said framework over MIPLIB 2017 and a neural network verification data set. Our framework and design show that adaptive cut selection does substantially improve performance over a diverse set of instances, but that finding a single function describing such a rule is difficult. Code for reproducing all experiments is available at https://github.com/Opt-Mucca/Adaptive-Cutsel-MILP.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/ojmo.25
Classification : 90C11
Keywords: Mixed-Integer Linear Programming, Cutting Plane Selection, Instance-Dependent Learning

Turner, Mark 1, 2 ; Koch, Thorsten 1, 2 ; Serrano, Felipe 3, 2 ; Winkler, Michael 4, 2

1 Chair of Software and Algorithms for Discrete Optimization, Institute of Mathematics, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
2 Zuse Institute Berlin, Department of Mathematical Optimization, Takustr. 7, 14195 Berlin
3 Cardinal Operations GmbH, Englerallee 19 14195 Berlin, Germany
4 Gurobi GmbH, Ulmenstr. 37-39, 60325 Frankfurt am Main, Germany
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{OJMO_2023__4__A5_0,
     author = {Turner, Mark and Koch, Thorsten and Serrano, Felipe and Winkler, Michael},
     title = {Adaptive {Cut} {Selection} in {Mixed-Integer} {Linear} {Programming}},
     journal = {Open Journal of Mathematical Optimization},
     eid = {5},
     pages = {1--28},
     year = {2023},
     publisher = {Universit\'e de Montpellier},
     volume = {4},
     doi = {10.5802/ojmo.25},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/ojmo.25/}
}
TY  - JOUR
AU  - Turner, Mark
AU  - Koch, Thorsten
AU  - Serrano, Felipe
AU  - Winkler, Michael
TI  - Adaptive Cut Selection in Mixed-Integer Linear Programming
JO  - Open Journal of Mathematical Optimization
PY  - 2023
SP  - 1
EP  - 28
VL  - 4
PB  - Université de Montpellier
UR  - https://www.numdam.org/articles/10.5802/ojmo.25/
DO  - 10.5802/ojmo.25
LA  - en
ID  - OJMO_2023__4__A5_0
ER  - 
%0 Journal Article
%A Turner, Mark
%A Koch, Thorsten
%A Serrano, Felipe
%A Winkler, Michael
%T Adaptive Cut Selection in Mixed-Integer Linear Programming
%J Open Journal of Mathematical Optimization
%D 2023
%P 1-28
%V 4
%I Université de Montpellier
%U https://www.numdam.org/articles/10.5802/ojmo.25/
%R 10.5802/ojmo.25
%G en
%F OJMO_2023__4__A5_0
Turner, Mark; Koch, Thorsten; Serrano, Felipe; Winkler, Michael. Adaptive Cut Selection in Mixed-Integer Linear Programming. Open Journal of Mathematical Optimization, Tome 4 (2023), article  no. 5, 28 p.. doi: 10.5802/ojmo.25

[1] Achterberg, Tobias Constraint integer programming, Ph. D. Thesis, TU Berlin (2007)

[2] Achterberg, Tobias; Bixby, Robert E.; Gu, Zonghao; Rothberg, Edward; Weninger, Dieter Presolve reductions in mixed integer programming, INFORMS J. Comput., Volume 32 (2020) no. 2, pp. 473-506 | Zbl | MR | DOI

[3] Achterberg, Tobias; Wunderling, Roland Mixed integer programming: Analyzing 12 years of progress, Facets of combinatorial optimization, Springer, 2013, pp. 449-481 | DOI | Zbl

[4] Andreello, Giuseppe; Caprara, Alberto; Fischetti, Matteo Embedding {0, 1/2}-Cuts in a Branch-and-Cut Framework: A Computational Study, INFORMS J. Comput., Volume 19 (2007) no. 2, pp. 229-238 | Zbl | MR | DOI

[5] Ba, Jimmy L.; Kiros, Jamie Ryan; Hinton, Geoffrey E. Layer normalization (2016) (https://arxiv.org/abs/1607.06450)

[6] Balcan, Maria-Florina; Dick, Travis; Sandholm, Tuomas; Vitercik, Ellen Learning to branch, International Conference on Machine Learning, PMLR (2018), pp. 344-353

[7] Balcan, Maria-Florina; Prasad, Siddharth; Sandholm, Tuomas; Vitercik, Ellen Sample complexity of tree search configuration: Cutting planes and beyond, Adv. Neural Inf. Process. Syst., Volume 34 (2021)

[8] Baltean-Lugojan, Radu; Bonami, Pierre; Misener, Ruth; Tramontani, Andrea Scoring positive semidefinite cutting planes for quadratic optimization via trained neural networks (2019) (https://optimization-online.org/2018/11/6943/)

[9] Bestuzheva, Ksenia; Besançon, Mathieu; Chen, Wei-Kun; Chmiela, Antonia; Donkiewicz, Tim; van Doornmalen, Jasper; Eifler, Leon; Gaul, Oliver; Gamrath, Gerald; Gleixner, Ambros; Gottwald, Leona; Graczyk, Christoph; Halbig, Katrin; Hoen, Alexander; Hojny, Christopher; Hulst, Rolf van der; Koch, Thorsten; Lübbecke, Marco; Maher, Stephen; Matter, Frederic; Mühmer, Erik; Müller, Benjamin; Pfetsch, Marc E.; Rehfeldt, Daniel; Schlein, Steffan; Schlösser, Franziska; Serrano, Felipe; Shinano, Yuji; Sofranac, Boro; Turner, Mark; Vigerske, Stefan; Wegscheider, Fabian; Wellner, Philipp; Weninger, Dieter; Witzig, Jakob Enabling research through the SCIP optimization suite 8.0, ACM Trans. Math. Softw., Volume 49 (2023) no. 2, pp. 1-21 | DOI

[10] Cappart, Quentin; Chételat, Didier; Khalil, Elias; Lodi, Andrea; Morris, Christopher; Veličković, Petar Combinatorial optimization and reasoning with graph neural networks (2021) (https://arxiv.org/abs/2102.09544)

[11] Dey, Santanu S.; Molinaro, Marco Theoretical challenges towards cutting-plane selection, Math. Program., Volume 170 (2018) no. 1, pp. 237-266 | Zbl | MR

[12] Ding, Jian-Ya; Zhang, Chao; Shen, Lei; Li, Shengyin; Wang, Bing; Xu, Yinghui; Song, Le Accelerating primal solution findings for mixed integer programs based on solution prediction, Proceedings of the AAAI Conference on Artificial Intelligence, Volume 34 (2020), pp. 1452-1459 | DOI

[13] Fey, Matthias; Lenssen, Jan E. Fast Graph Representation Learning with PyTorch Geometric, ICLR Workshop on Representation Learning on Graphs and Manifolds (2019)

[14] Gamrath, Gerald; Anderson, Daniel; Bestuzheva, Ksenia; Chen, Wei-Kun; Eifler, Leon; Gasse, Maxime; Gemander, Patrick; Gleixner, Ambros; Gottwald, Leona; Halbig, Katrin; Hendel, Gregor; Hojny, Christopher; Koch, Thorsten; Le Bodic, Pierre; Maher, Stephen; Matter, Frederic; Miltenberger, Matthias; Mühmer, Erik; Müller, Benjamin; Pfetsch, Marc E.; Schlösser, Franziska; Serrano, Felipe; Shinano, Yuji; Tawfik, Christine; Vigerske, Stefan; Wegscheider, Fabian; Weninger, Dieter; Witzig, Jakob The SCIP Optimization Suite 7.0 (2020) no. 20-10 http://nbn-resolving.de/urn:nbn:de:0297-zib-78023 (ZIB-Report)

[15] Gasse, Maxime; Chételat, Didier; Ferroni, Nicola; Charlin, Laurent; Lodi, Andrea Exact combinatorial optimization with graph convolutional neural networks (2019) (https://arxiv.org/abs/1906.01629)

[16] Gleixner, Ambros; Hendel, Gregor; Gamrath, Gerald; Achterberg, Tobias; Bastubbe, Michael; Berthold, Timo; Christophel, Philipp; Jarck, Kati; Koch, Thorsten; Linderoth, Jeff et al. MIPLIB 2017: data-driven compilation of the 6th mixed-integer programming library, Math. Program. Comput., Volume 13 (2021) no. 3, pp. 443-490 | Zbl | MR | DOI

[17] Goodfellow, Ian; Bengio, Yoshua; Courville, Aaron Deep learning, MIT Press, 2016

[18] Gurobi Optimization, LLC Gurobi Optimizer Reference Manual, 2021 (https://www.gurobi.com)

[19] Huang, Zeren; Wang, Kerong; Liu, Furui; Zhen, Hui-ling; Zhang, Weinan; Yuan, Mingxuan; Hao, Jianye; Yu, Yong; Wang, Jun Learning to Select Cuts for Efficient Mixed-Integer Programming (2021) (https://arxiv.org/abs/2105.13645)

[20] Kingma, Diederik P.; Ba, Jimmy L. Adam: A method for stochastic optimization (2014) (https://arxiv.org/abs/1412.6980)

[21] Lindauer, Marius; Eggensperger, Katharina; Feurer, Matthias; Biedenkapp, André; Deng, Difan; Benjamins, Carolin; Ruhkopf, Tim; Sass, René; Hutter, Frank SMAC3: A Versatile Bayesian Optimization Package for Hyperparameter Optimization, J. Mach. Learn. Res., Volume 23 (2022) no. 54, pp. 1-9 http://jmlr.org/papers/v23/21-0888.html | Zbl

[22] Maher, Stephen; Miltenberger, Matthias; Pedroso, Joao Pedro; Rehfeldt, Daniel; Schwarz, Robert; Serrano, Felipe PySCIPOpt: Mathematical programming in python with the SCIP optimization suite, International Congress on Mathematical Software, Springer (2016), pp. 301-307 | Zbl

[23] Marchand, Hugues; Martin, Alexander; Weismantel, Robert; Wolsey, Laurence Cutting planes in integer and mixed integer programming, Discrete Appl. Math., Volume 123 (2002) no. 1-3, pp. 397-446 | Zbl | MR | DOI

[24] Nair, Vinod; Bartunov, Sergey; Gimeno, Felix; von Glehn, Ingrid; Lichocki, Pawel; Lobov, Ivan; O’Donoghue, Brendan; Sonnerat, Nicolas; Tjandraatmadja, Christian; Wang, Pengming et al. Solving mixed integer programs using neural networks (2020) (https://arxiv.org/abs/2012.13349)

[25] Paszke, Adam; Gross, Sam; Massa, Francisco; Lerer, Adam; Bradbury, James; Chanan, Gregory; Killeen, Trevor; Lin, Zeming; Gimelshein, Natalia; Antiga, Luca; Desmaison, Alban; Kopf, Andreas; Yang, Edward; DeVito, Zachary; Raison, Martin; Tejani, Alykhan; Chilamkurthy, Sasank; Steiner, Benoit; Fang, Lu; Bai, Junjie; Chintala, Soumith PyTorch: An Imperative Style, High-Performance Deep Learning Library, Advances in Neural Information Processing Systems 32 (Wallach, H.; Larochelle, H.; Beygelzimer, A.; d’Alché-Buc, F.; Fox, E.; Garnett, R., eds.), 2019, pp. 8024-8035 http://papers.neurips.cc/...

[26] Sanchez-Lengeling, Benjamin; Reif, Emily; Pearce, Adam; Wiltschko, Alexander B. A gentle introduction to graph neural networks, Distill, Volume 6 (2021) no. 9, e33 | DOI

[27] Steever, Zachary; Murray, Chase; Yuan, Junsong; Karwan, Mark; Lübbecke, Marco An Image-based Approach to Detecting Structural Similarity Among Mixed Integer Programs, INFORMS J. Comput., Volume 34 (2022) no. 4, pp. 1849-1870 | Zbl | MR | DOI

[28] Sutton, Richard S.; Barto, Andrew G. Reinforcement learning: An introduction, MIT Press, 2018

[29] Tang, Yunhao; Agrawal, Shipra; Faenza, Yuri Reinforcement learning for integer programming: Learning to cut, International Conference on Machine Learning, PMLR (2020), pp. 9367-9376

[30] Wesselmann, Franz; Stuhl, Uwe Implementing cutting plane management and selection techniques (2012) (Technical report)

[31] Wolfram Research, Inc. Mathematica, Version 12.2, 2020 (https://www.wolfram.com/mathematica)

Cité par Sources :