Construction of Anosov flows in dimension 3 by gluing blocks
Mathematics Research Reports, Tome 4 (2023), pp. 47-62

We present a new result allowing us to construct Anosov flows in dimension 3 by gluing building blocks. By a building block, we mean a compact 3-manifold with boundary P, equipped with a 𝒞 1 vector field X, such that the maximal invariant set t X t (P) is a saddle hyperbolic set, and such that P is quasi-transverse to X, i.e., transverse except for a finite number of periodic orbits contained in P. Our gluing theorem is a generalization of a recent result of F. Béguin, C. Bonatti, and B. Yu who only considered the case where P is transverse to X. The quasi-transverse setting is much more natural. Indeed, our result can be seen as a counterpart of a theorem by Barbot and Fenley which roughly states that every 3-dimensional Anosov flow admits a canonical decomposition into building blocks (with quasi-transverse boundary). We will also present a number of applications of our theorem.

Reçu le :
Publié le :
DOI : 10.5802/mrr.17
Classification : 37D20, 37D05, 37C10, 57K30, 57R30
Keywords: Anosov flows, 3-manifolds, building blocks

Paulet, Neige 1

1 LAGA, Université Sorbonne Paris Nord, 93143 Villetaneuse FRANCE
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{MRR_2023__4__47_0,
     author = {Paulet, Neige},
     title = {Construction of {Anosov} flows in dimension 3 by gluing blocks},
     journal = {Mathematics Research Reports},
     pages = {47--62},
     year = {2023},
     publisher = {MathOA foundation},
     volume = {4},
     doi = {10.5802/mrr.17},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/mrr.17/}
}
TY  - JOUR
AU  - Paulet, Neige
TI  - Construction of Anosov flows in dimension 3 by gluing blocks
JO  - Mathematics Research Reports
PY  - 2023
SP  - 47
EP  - 62
VL  - 4
PB  - MathOA foundation
UR  - https://www.numdam.org/articles/10.5802/mrr.17/
DO  - 10.5802/mrr.17
LA  - en
ID  - MRR_2023__4__47_0
ER  - 
%0 Journal Article
%A Paulet, Neige
%T Construction of Anosov flows in dimension 3 by gluing blocks
%J Mathematics Research Reports
%D 2023
%P 47-62
%V 4
%I MathOA foundation
%U https://www.numdam.org/articles/10.5802/mrr.17/
%R 10.5802/mrr.17
%G en
%F MRR_2023__4__47_0
Paulet, Neige. Construction of Anosov flows in dimension 3 by gluing blocks. Mathematics Research Reports, Tome 4 (2023), pp. 47-62. doi: 10.5802/mrr.17

[1] Anosov, D. V. Geodesic flows on closed Riemann manifolds with negative curvature, Proc. Steklov Inst. Math. 90, 235 p. (1967)., 1967 | Zbl

[2] Barbot, Thierry Characterization of Anosov flows in dimension 3 by their weak foliations, Ergodic Theory Dyn. Syst., Volume 15 (1995) no. 2, pp. 247-270 | MR | DOI | Zbl

[3] Barbot, Thierry Mise en position optimale de tores par rapport à un flot d’Anosov., Commentarii mathematici Helvetici, Volume 70 (1995) no. 1, pp. 113-160 http://eudml.org/doc/140363 | DOI | MR | Zbl

[4] Barbot, Thierry Generalizations of the Bonatti-Langevin example of Anosov flow and their classification up to topological equivalence, Commun. Anal. Geom., Volume 6 (1998) no. 4, pp. 749-798 | DOI | Zbl | MR

[5] Barbot, Thierry; Fenley, Sergio Pseudo-Anosov flows in toroidal manifolds, Geometry & Topology Monographs, Volume 17 (2013) no. 4, pp. 1877-1954 | HAL | DOI | MR | Zbl

[6] Barbot, Thierry; Fenley, Sergio Classification and rigidity of totally periodic pseudo-Anosov flows in graph manifolds, Ergodic Theory and Dynamical Systems, Volume 35 (2014) no. 06, pp. 1681-1722 | HAL | DOI | MR | Zbl

[7] Barbot, Thierry; Fenley, Sérgio Free Seifert pieces of pseudo-Anosov flows, Geom. Topol., Volume 25 (2021) no. 3, pp. 1331-1440 | DOI | MR | Zbl

[8] Barbot, Thierry; Fenley, Sérgio Orbital equivalence classes of finite coverings of geodesic flows, 2022 | arXiv | DOI

[9] Barbot, Thierry; Fenley, Sergio personnal communication (2023)

[10] Barthelmé, Thomas; Fenley, Sérgio Counting periodic orbits of Anosov flows in free homotopy classes, Comment. Math. Helv., Volume 92 (2017) no. 4, pp. 641-714 | DOI | Zbl | MR

[11] Béguin, François; Bonatti, Christian; Yu, Bin Building Anosov flows on 3-Manifolds, Geometry & Topology, Volume 21 (2017) no. 3, pp. 1837-1930 | MR | DOI | Zbl

[12] Beguin, Francois; Yu, Bin A uniqueness theorem for transitive Anosov flows obtained by gluing hyperbolic plugs, 2019 | arXiv | DOI

[13] Bonatti, Christian; Iakovoglou, Ioannis Anosov flows on 3-manifolds: the surgeries and the foliations, 2020 | arXiv | DOI

[14] Bonatti, Christian; Langevin, Rémi Un exemple de flot d’Anosov transitif transverse à un tore et non conjugué à une suspension, Ergodic Theory and Dynamical Systems, Volume 14 (1994) no. 4, pp. 633-643 | DOI | Zbl

[15] Calegari, Danny Foliations and the geometry of 3-manifolds, Oxford Math. Monogr., Oxford: Oxford University Press, 2007 | Zbl | DOI

[16] Clay, Adam; Pinsky, Tali Graph manifolds that admit arbitrarily many Anosov flows, 2020 | arXiv | DOI

[17] Fenley, Sérgio Anosov flows in 3-manifolds, Ann. Math. (2), Volume 139 (1994) no. 1, pp. 79-115 | DOI | Zbl | MR

[18] Franks, John; Williams, Bob Anomalous Anosov flows, Global theory of dynamical systems, Springer, 1980, pp. 158-174 | Zbl | DOI

[20] Handel, Michael; Thurston, William P. Anosov flows on new 3-Manifolds, Inventiones mathematicae, Volume 59 (1980) no. 2, pp. 95-103 | DOI | MR | Zbl

[21] Paulet, Neige Construction of Anosov flows in dimension 3 by gluing blocks (2023) (in preparation)

[22] Paulet, Neige Flots d’Anosov en dimension trois construits par recollements de blocs, Ph. D. Thesis, Université Paris XIII (Sorbonne Paris Nord) (2023) http://www.theses.fr/2023PA131009 (Thèse de doctorat dirigée par Béguin, François Mathématiques Paris 13 2023)

[23] Tomter, Per Anosov flows on infra-homogeneous spaces, Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968) (1970), pp. 299-327 | MR

Cité par Sources :