We state a superconvergence result for the lowest order Raviart-Thomas approximation of eigenvalue problems. It is known that a similar superconvergence result holds for the mixed approximation of Laplace problem; here we introduce a new proof, since the one given for the source problem cannot be generalized in a straightforward way to the eigenvalue problem. Numerical experiments confirm the superconvergence property and suggest that it also holds for the lowest order Brezzi-Douglas-Marini approximation.
Keywords: eigenvalue problem, mixed finite element, superconvergence result
@article{M2AN_2009__43_5_853_0,
author = {Gardini, Francesca},
title = {Mixed approximation of eigenvalue problems : a superconvergence result},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {853--865},
year = {2009},
publisher = {EDP Sciences},
volume = {43},
number = {5},
doi = {10.1051/m2an/2009005},
mrnumber = {2559736},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2009005/}
}
TY - JOUR AU - Gardini, Francesca TI - Mixed approximation of eigenvalue problems : a superconvergence result JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2009 SP - 853 EP - 865 VL - 43 IS - 5 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2009005/ DO - 10.1051/m2an/2009005 LA - en ID - M2AN_2009__43_5_853_0 ER -
%0 Journal Article %A Gardini, Francesca %T Mixed approximation of eigenvalue problems : a superconvergence result %J ESAIM: Modélisation mathématique et analyse numérique %D 2009 %P 853-865 %V 43 %N 5 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an/2009005/ %R 10.1051/m2an/2009005 %G en %F M2AN_2009__43_5_853_0
Gardini, Francesca. Mixed approximation of eigenvalue problems : a superconvergence result. ESAIM: Modélisation mathématique et analyse numérique, Tome 43 (2009) no. 5, pp. 853-865. doi: 10.1051/m2an/2009005
[1] , Sobolev spaces, Pure and Applied Mathematics 65. Academic Press, New York-London (1975). | Zbl | MR
[2] , and , A posteriori error estimates in finite element acoustic analysis. J. Comput. Appl. Math. 117 (2000) 105-119. | Zbl | MR
[3] , , and , Accurate pressure post-process of a finite element method for elastoacoustics. Numer. Math. 98 (2004) 389-425. | Zbl | MR
[4] and , Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. RAIRO Modél. Math. Anal. Numér. 19 (1985) 7-32. | Zbl | MR | Numdam
[5] and , Eigenvalue Problems, in Handbook of Numerical Analysis 2, P.G. Ciarlet and J.L. Lions Eds., North Holland (1991). | Zbl | MR
[6] , and , On the convergence of eigenvalues for mixed formulations. Ann. Sc. Norm. Sup. Pisa Cl. Sci. 25 (1997) 131-154. | Zbl | MR | Numdam
[7] , and , Edge element computation of Maxwell's eigenvalues on general quadrilateral meshes. Math. Models Methods Appl. Sci. 16 (2006) 265-273. | Zbl | MR
[8] , Superconvergence and a posteriori error estimation for triangular mixed finite elements. Numer. Math. 68 (1994) 311-324. | Zbl | MR
[9] and , Mixed and hybrid finite element methods, Springer Series in Computational Mathematics 15. Springer-Verlag, New York (1991). | Zbl | MR
[10] , The finite element method for elliptic problems, Studies in Mathematics and its application 4. North Holland, Amsterdam (1978). | Zbl | MR
[11] , and , A posteriori error estimations for mixed approximation of eigenvalue problems. Math. Models Methods Appl. Sci. 9 (1999) 1165-1178. | Zbl | MR
[12] , A posteriori error estimates for eigenvalue problems in mixed form. Ist. lombardo Accd. Sci. Lett. Rend. A. 138 (2004) 17-34.
[13] , A posteriori error estimates for an eigenvalue problem arising from fluid-structure interactions, Computational Fluid and Solid Mechanics. Elsevier, Amsterdam (2005).
[14] , A posteriori error estimates for eigenvalue problems in mixed form. Ph.D. Thesis, Università degli Studi di Pavia, Pavia, Italy (2005).
[15] , Elliptic problem in nonsmooth domains, Monographs and Studies in Mathematics 24. Pitman, Boston (1985). | Zbl | MR
[16] and , Problèmes aux limites non homogènes et applications, Travaux et Recherches Matheḿatiques 17. Dunod, Paris (1968). | Zbl
[17] , An inexpensive method for the evaluation of the solution of the lowest order Raviart-Thomas mixed method. SIAM J. Numer. Anal. 22 (1985) 493-496. | Zbl | MR
Cité par Sources :





