In this work, we consider dynamic frictionless contact with adhesion between a viscoelastic body of the Kelvin-Voigt type and a stationary rigid obstacle, based on the Signorini's contact conditions. Including the adhesion processes modeled by the bonding field, a new version of energy function is defined. We use the energy function to derive a new form of energy balance which is supported by numerical results. Employing the time-discretization, we establish a numerical formulation and investigate the convergence of numerical trajectories. The fully discrete approximation which satisfies the complementarity conditions is computed by using the nonsmooth Newton's method with the Kanzow-Kleinmichel function. Numerical simulations of a viscoelastic beam clamped at two ends are presented.
Keywords: adhesion, Signorini's contact, complementarity conditions, time-discretization
@article{M2AN_2008__42_6_1021_0,
author = {Ahn, Jeongho},
title = {Thick obstacle problems with dynamic adhesive contact},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {1021--1045},
year = {2008},
publisher = {EDP Sciences},
volume = {42},
number = {6},
doi = {10.1051/m2an:2008037},
mrnumber = {2473318},
zbl = {1149.74043},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an:2008037/}
}
TY - JOUR AU - Ahn, Jeongho TI - Thick obstacle problems with dynamic adhesive contact JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2008 SP - 1021 EP - 1045 VL - 42 IS - 6 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an:2008037/ DO - 10.1051/m2an:2008037 LA - en ID - M2AN_2008__42_6_1021_0 ER -
%0 Journal Article %A Ahn, Jeongho %T Thick obstacle problems with dynamic adhesive contact %J ESAIM: Modélisation mathématique et analyse numérique %D 2008 %P 1021-1045 %V 42 %N 6 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an:2008037/ %R 10.1051/m2an:2008037 %G en %F M2AN_2008__42_6_1021_0
Ahn, Jeongho. Thick obstacle problems with dynamic adhesive contact. ESAIM: Modélisation mathématique et analyse numérique, Tome 42 (2008) no. 6, pp. 1021-1045. doi: 10.1051/m2an:2008037
[1] , A vibrating string with dynamic frictionless impact. Appl. Numer. Math. 57 (2007) 861-884. | Zbl | MR
[2] and , Euler-Bernoulli beam with dynamic contact: Discretization, convergence, and numerical results. SIAM J. Numer. Anal. 43 (2005) 1455-1480 (electronic). | Zbl | MR
[3] and , Existence of solutions for a class of impact problems without viscosity. SIAM J. Math. Anal. 38 (2006) 37-63 (electronic). | Zbl | MR
[4] and , Euler-Bernoulli beam with dynamic contact: Penalty approximation and existence. Numer. Funct. Anal. Optim. 28 (2007) 1003-1026. | Zbl | MR
[5] and , Dynamic frictionless contact in linear viscoelasticity. IMA J. Numer. Anal. doi:10.1093/imanum/drm029. | Zbl | MR
[6] , , , , , and , A membrane in adhesive contact. SIAM J. Appl. Math. 64 (2003) 152-169. | Zbl | MR
[7] , and , Modelling and simulations of a bonded rod. Math. Comput. Model. 42 (2005) 553-572. | Zbl | MR
[8] and , The Analysis of Multigrid Methods, Handbook of Numerical Analysis VII. North-Holland, Amsterdam (2000). | Zbl | MR
[9] and , Radon-Nikodým theorems, Vol. I. North Holland/Elsevier (2002). | Zbl | MR
[10] , , and , Variational and numerical analysis of a quasistatic viscoelastic contact problem with adhesion. J. Comput. Appl. Math. 159 (2003) 431-465. | Zbl | MR
[11] , and , Dynamic frictionless contact with adhesion. Z. Angew. Math. Phys. 55 (2004) 32-47. | Zbl | MR
[12] and , Finite-Dimensional Variational Inequalities and Complementarity Problems, Springer Series in Operations Research I, II. Springer-Verlag, New York (2003). | Zbl
[13] , and , Analysis and numerical simulations of a dynamic contact problem with adhesion. Math. Comput. Modelling 37 (2003) 1317-1333. | MR
[14] , Équilibre des structures qui adhèrent à leur support. C. R. Acad. Sci. Paris Sér. II 295 (1982) 913-916. | Zbl | MR
[15] , Adhérence des solides. J. Méc. Théor. Appl. 6 (1987) 383-407. | Zbl
[16] , Contact with adhesion, in Topics Nonsmooth Mechanics, J.J. Moreau, P.D. Panagiotopoulos and G. Strang Eds. (1988) 157-186 | Zbl | MR
[17] , , and , Contact with adhesion, in ESDA Proceedings of the 1996 Engineering Systems Design and Analysis Conference, A. Lagarde and M. Raous Eds., ASME, New York (1996) 151-156.
[18] , , and , Elastic beam in adhesive contact. Int. J. Solids Structures 39 (2002) 1145-1164. | Zbl | MR
[19] , and , A viscoelastic frictionless contact problem with adhesion. Appl. Anal. 80 (2001) 233-255. | Zbl | MR
[20] and , A new class of semismooth Newton-type methods for nonlinear complementarity problems. Comput. Optim. Appl. 11 (1998) 227-251. | Zbl | MR
[21] , Modern Analysis. CRC Press, Boca Raton, FL, USA (1998). | Zbl
[22] and , A wave problem in a half-space with a unilateral contraint at the boundary. J. Diff. Eq. 53 (1984) 309-361. | Zbl | MR
[23] and , Viscoélastodynamique monodimensionnelle avec conditions de Signorini. C. R. Acad. Sci. Paris Sér. I 334 (2002) 983-988. | Zbl | MR
[24] and , A nonsmooth version of Newton's method. Math. Program. 58 (1993) 353-367. | Zbl | MR
[25] , and , A consistent model coupling adhesion, friction, and unilateral contact. Comput. Methods Appl. Mech. Engrg. 177 (1999) 383-399. | Zbl | MR
[26] , A hyperbolic problem of second order with unilateral constraints: the vibrating string with a concave obstacle. J. Math. Anal. Appl. 73 (1980) 138-191. | Zbl | MR
[27] , and , Models and Analysis of Quasistatic Contact, Lect. Notes Phys. 655. Springer, Berlin-Heidelberg-New York (2004). | Zbl
[28] , and , Analysis and Approximation of Contact Problems with Adhesion or Damage, Pure and Applied Mathematics 276. Chapman-Hall/CRC Press, New York (2006). | Zbl | MR
[29] , Convolution complementarity problems with application to impact problems. IMA J. Appl. Math. 71 (2006) 92-119. | Zbl | MR
[30] , Differentiating complementarity problems and fractional index convolution complementarity problems. Houston J. Math. 33 (2007) 301-322. | Zbl | MR
[31] , Energy balance for viscoelastic bodies in frictionless contact. (Submitted).
[32] , Partial Differential Equations 1, Applied Mathematical Sciences 115. Springer-Verlag, New York (1996). | MR
[33] , Interpolation Theory, Function Spaces, Differential Operators. North Holland, Amsterdam, New York (1978). | Zbl | MR
[34] , Partial Differential Equations. Cambridge University Press (1987). | Zbl | MR
Cité par Sources :





