The aim of this paper is to investigate the stability of boundary layers which appear in numerical solutions of hyperbolic systems of conservation laws in one space dimension on regular meshes. We prove stability under a size condition for Lax Friedrichs type schemes and inconditionnal stability in the scalar case. Examples of unstable boundary layers are also given.
@article{M2AN_2001__35_1_91_0,
author = {Chainais-Hillairet, Claire and Grenier, Emmanuel},
title = {Numerical boundary layers for hyperbolic systems in {1-D}},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {91--106},
year = {2001},
publisher = {EDP Sciences},
volume = {35},
number = {1},
mrnumber = {1811982},
zbl = {0980.65093},
language = {en},
url = {https://www.numdam.org/item/M2AN_2001__35_1_91_0/}
}
TY - JOUR AU - Chainais-Hillairet, Claire AU - Grenier, Emmanuel TI - Numerical boundary layers for hyperbolic systems in 1-D JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2001 SP - 91 EP - 106 VL - 35 IS - 1 PB - EDP Sciences UR - https://www.numdam.org/item/M2AN_2001__35_1_91_0/ LA - en ID - M2AN_2001__35_1_91_0 ER -
%0 Journal Article %A Chainais-Hillairet, Claire %A Grenier, Emmanuel %T Numerical boundary layers for hyperbolic systems in 1-D %J ESAIM: Modélisation mathématique et analyse numérique %D 2001 %P 91-106 %V 35 %N 1 %I EDP Sciences %U https://www.numdam.org/item/M2AN_2001__35_1_91_0/ %G en %F M2AN_2001__35_1_91_0
Chainais-Hillairet, Claire; Grenier, Emmanuel. Numerical boundary layers for hyperbolic systems in 1-D. ESAIM: Modélisation mathématique et analyse numérique, Tome 35 (2001) no. 1, pp. 91-106. https://www.numdam.org/item/M2AN_2001__35_1_91_0/
[1] , and, First order quasilinear equations with boundary conditions. Partial Differential Equations 4 (1979) 1017-1034. | Zbl
[2] , and, Convergence of a finite-volume time-explicit scheme for symmetric linear hyperbolic systems on bounded domains. C. R. Acad. Sci. Paris, Sér. I Math. 331 (2000) 95-100. | Zbl
[3] and, Boundary conditions for nonlinear hyperbolic systems of conservation laws. J. Differential Equations 71 (1988) 93-122. | Zbl
[4] , Étude des conditions aux limites pour un système strictement hyperbolique, via l'approximation parabolique. J. Math. Pures Appl. 75 (1996) 485-508. | Zbl
[5] and, Étude des conditions aux limites pour un système strictement hyberbolique via l'approximation parabolique. C. R. Acad. Sci. Paris Sér. I Math. 319 (1994) 377-382. | Zbl
[6] and, Conditions aux limites pour un système strictement hyperbolique fournies par le schéma de Godunov. RAIRO-Modél. Math. Anal. Numér. 31 (1997) 359-380. | Zbl | Numdam
[7] , Nonlinear asymptotic stability of viscous shock profiles for conservation laws. Arch. Rational Mech. Anal. 95 (1986) 325-344. | Zbl
[8] and, Boundary layers for viscous perturbations of noncharacteristic quasilinear hyperbolic problems. J. Differential Equations 143 (1998) 110-146. | Zbl
[9] and, Boundary layers in weak solutions of hyperbolic conservation laws. Arch. Ration. Mech. Anal. 147 (1999) 47-88. | Zbl
[10] and, Boundary value problems for quasilinear hyperbolic systems. Math. series V. Duke Univ., Durham (1985). | Zbl
[11] , Nonlinear stability of shock waves for viscous conservation laws. Mem. Amer. Math. Soc. 56 (1985) 108 p. | Zbl | MR
[12] and, Differentiability of solutions to hyperbolic initial boundary value problems. Trans. Amer. Math. Soc. 189 (1974) 303-318. | Zbl
[13] , Sur la stabilité des couches limites de viscosité, preprint. | MR | Numdam
[14] , and, Global stability of dynamical systems. Springer-Verlag, New-York, Berlin, 1987. | MR





