@article{M2AN_2000__34_6_1233_0,
author = {Gunzburger, Max D. and Kim, Hongchul and Manservisi, Sandro},
title = {On a shape control problem for the stationary {Navier-Stokes} equations},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {1233--1258},
year = {2000},
publisher = {Dunod},
volume = {34},
number = {6},
mrnumber = {1812735},
zbl = {0981.76027},
language = {en},
url = {https://www.numdam.org/item/M2AN_2000__34_6_1233_0/}
}
TY - JOUR AU - Gunzburger, Max D. AU - Kim, Hongchul AU - Manservisi, Sandro TI - On a shape control problem for the stationary Navier-Stokes equations JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2000 SP - 1233 EP - 1258 VL - 34 IS - 6 PB - Dunod UR - https://www.numdam.org/item/M2AN_2000__34_6_1233_0/ LA - en ID - M2AN_2000__34_6_1233_0 ER -
%0 Journal Article %A Gunzburger, Max D. %A Kim, Hongchul %A Manservisi, Sandro %T On a shape control problem for the stationary Navier-Stokes equations %J ESAIM: Modélisation mathématique et analyse numérique %D 2000 %P 1233-1258 %V 34 %N 6 %I Dunod %U https://www.numdam.org/item/M2AN_2000__34_6_1233_0/ %G en %F M2AN_2000__34_6_1233_0
Gunzburger, Max D.; Kim, Hongchul; Manservisi, Sandro. On a shape control problem for the stationary Navier-Stokes equations. ESAIM: Modélisation mathématique et analyse numérique, Tome 34 (2000) no. 6, pp. 1233-1258. https://www.numdam.org/item/M2AN_2000__34_6_1233_0/
[1] and , On some control problems in fluid mechanics. Theor. Comp. Fluid Dyn. 1 (1990) 303-326. | Zbl
[2] , Sobolev Spaces, Academic Press, New York (1975). | Zbl | MR
[3] , and , Optimal Control. Consultants Bureau, New York (1987). | Zbl | MR
[4] and , On the problem of riblets as a drag reduction device. Optimal Control Appl. Methods 10 (1989) 93-112. | Zbl | MR
[5] , The finite element method with Lagrangian multipliers. Numer. Math. 16 (1973) 179-192. | Zbl | MR
[6] , Existence of a solution for complete least squares optimal shape problems. Numer. Funct. Anal. Optim. 18 (1997) 495-505. | Zbl | MR
[7] and , An extension theorem for the space Hdiv. Appl. Math. Lett. (to appear). | Zbl
[8] and , Application de la méthode des éléments finis à l'approximation d'un problème de domaine optimal. Méthodes de résolution des problèmes approchés. Appl. Math. Optim. 2 (1975) 130-169. | Zbl | MR
[9] , On the existence of a solution in a domain identification problem. J. Math. Anal. Appl 52 (1975) 189-219. | Zbl | MR
[10] , The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). | Zbl | MR
[11] , Introduction to Numerical Linear Algebra and Optimization. Cambridge University, Cambridge (1989). | Zbl | MR
[12] , , , , and , Least squares domain embedding methods for Neumann problems: applications to fluid dynamics, in Domain Decomposition Methods for Partial Differential Equations, D. Keyes et al. Eds., SIAM, Philadelphia (1992). | Zbl | MR
[13] , and , Consistent approximations for an optimal design problem. Report 98005, Labotatoire d'Analyse Numérique, Paris (1998).
[14] , Lower semi-continuity in domain optimization problems. J. Optim. Theory Appl. 57 (1988) 407-422. | Zbl | MR
[15] and , The Finite Element Method for Navier-Stokes Equations: Theory and Algorithms. Springer, New York (1986). | Zbl | MR
[16] , Numerical Methods for Nonlinear Variational Problems. Springer, New York (1984). | Zbl | MR
[17] and , Toward the computation of minimum drag profile in viscous laminar flow. Appl. Math. Model. 1 (1976) 58-66. | Zbl | MR
[18] , and , Analysis and finite element approximations of optimal control problems for the stationary Navier-Stokes equations with Dirichlet controls. RAIRO Modél. Math. Anal. Numér. 25 (1991) 711-748. | Zbl | MR | Numdam
[19] , and , Optimal control and optimization of viscous, incompressible flow, in Incompressible Computational Fluid Dynamics, M. Gunzburger and R. Nicolaides Eds., Cambridge University, New York (1993) 109-150.
[20] and , Existence of a shape control problem for the stationary Navier-Stokes equations. SIAM J. Control Optim. 36 (1998) 895-909. | Zbl | MR
[21] and , Analysis and approximation of the velocity tracking problem for Navier-Stokes equations with distributed control. SIAM J. Numer. Anal. 37 (2000) 1481-1512. | Zbl | MR
[22] and , The velocity tracking problem for Navier-Stokes flows with bounded distributed control. SIAM J. Control Optim. 37 (1999) 1913-1945. | Zbl | MR
[23] and , A variational inequality formulation of an inverse elasticity problem. Comput. Methods Appl. Mech. Engrg. 189 (2000) 803-823. | Zbl | MR
[24] and , Some numerical computations of optimal shapes for Navier-Stokes flows (in préparation).
[25] , and , Control fictitious domain method for solving optimal shape design problems. RAIRO Modél Math. Anal. Numér. 27 (1993) 157-182. | Zbl | MR | Numdam
[26] and , Finite Element Approximation for Optimal Shape, Material and Topology Design, 2nd edn. Wiley, Chichester (1996). | Zbl | MR
[27] and , Shape optimization for mixed boundary value problems based on an embedding domain method (to appear). | Zbl
[28] , Optimal Shape Design in Fluid Mechanics. Thesis, University of Paris, France (1976).
[29] , On optimal design in fluid mechanics. J. Fluid. Mech. 64 (1974) 97-110. | Zbl | MR
[30] , Optimal Shape Design for Elliptic Systems. Springer, Berlin (1984). | Zbl | MR
[31] , Hilbert Space Methods for Partial Differential Equations. Electron. J. Differential Equations (1994) http://ejde.math.swt.edu/mono-toc.html | Zbl | MR
[32] , Domain variation for Stokes fiow, in Lecture Notes in Control and Inform. Sci. 159, X. Li and J. Yang Eds., Springer, Berlin (1990) 28-42. | Zbl | MR
[33] , Domain variation for drag Stokes flows, in Lecture notes in Control and Inform. Sci.114, A. Bermudez Ed., Springer, Berlin (1987) 277-283. | Zbl
[34] , Domain Optimization for the Stationary Stokes and Navier-Stokes Equations by Embedding Domain Technique. Thesis, TU Berlin, Berlin (1998).
[35] and , Introduction to Shape Optimization: Shape Sensitivity Analysis. Springer, Berlin (1992). | Zbl | MR
[36] , Non-smooth analysis and shape optimization in flow problems. IMA Preprint Series 1046, IMA, Minneapolis (1992).
[37] , Navier-Stokes equation. North-Holland, Amsterdam (1979).
[38] , Navier-Stokes equations and Nonlinear Functional Analysis. SIAM, Philadelphia (1993). | Zbl | MR
[39] , Fundamental Principles of the Theory of Extremal Problems. Wiley, Chichester (1986). | Zbl | MR





