@article{M2AN_2000__34_6_1165_0,
author = {Vanselow, Reiner},
title = {Convergence analysis for an exponentially fitted finite volume method},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {1165--1188},
year = {2000},
publisher = {Dunod},
volume = {34},
number = {6},
mrnumber = {1812732},
zbl = {0974.65098},
language = {en},
url = {https://www.numdam.org/item/M2AN_2000__34_6_1165_0/}
}
TY - JOUR AU - Vanselow, Reiner TI - Convergence analysis for an exponentially fitted finite volume method JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2000 SP - 1165 EP - 1188 VL - 34 IS - 6 PB - Dunod UR - https://www.numdam.org/item/M2AN_2000__34_6_1165_0/ LA - en ID - M2AN_2000__34_6_1165_0 ER -
Vanselow, Reiner. Convergence analysis for an exponentially fitted finite volume method. ESAIM: Modélisation mathématique et analyse numérique, Tome 34 (2000) no. 6, pp. 1165-1188. https://www.numdam.org/item/M2AN_2000__34_6_1165_0/
[1] , Error Estimate for the Finite-Element Solution of an Elliptic Singularly Perturbed Problem. IMA J. Numer. Anal 15 (1995) 161-196. | Zbl | MR
[2] , , and , Some Upwinding Techniques for Finite Element Approximations of Convection-Diffusion Equations. Numer. Math. 58 (1990) 185-202. | Zbl | MR
[3] , and , The Finite Volume Scharfetter-Gummel Method for Steady Convection Diffusion Equations. Comput. Visual Sci. 1 (1998) 123-136. | Zbl
[4] , and , Connection between Finite Volume and Mixed Finite Element Methods. RAIRO Modél. Math. Anal. Numér. 30 (1996) 445-465. | Zbl | MR | Numdam
[5] , Finite Elemente. Springer, Berlin (1992). | Zbl
[6] , Basic Error Estimates for Elliptic Problems, in Handbook of Numerical Analysis, Vol. II, Part 1, P.G. Ciarlet and J.L. Lions Eds., Elsevier, Amsterdam (1991) 17-351. | Zbl | MR
[7] , and , Convergence of Finite Volume Schemes for Semilinear Convection Diffusion Equations. Numer. Math. 1 (1999) 1-26. | Zbl | MR
[8] , and , A New Galerkin Framework for the Drift-Diffusion Equation in Semiconductors. East-West J. Numer. Math. 6 (1998) 101-135. | Zbl | MR
[9] , Finite Difference Methods on Irregular Networks. A Generalized Approach to Second Order Problems. Akademie, Berlin (1987). | Zbl | MR
[10] , An Error Estimate for a Finite Volume Scheme for a Diffusion-Convection Problem on a Triangular Mesh. Numer. Methods Partial Differential Equations 11 (1995) 165-173. | Zbl | MR
[11] and , Finite Volume Methods for Reaction-Diffusion Problems, in Finite Volumes for Complex Applications, F. Benkhaldoun and R. Vilsmeier Eds., Hermes, Paris (1996) 231-240.
[12] and , A New Non-Conforming Petrov-Galerkin Finite Element Method with Triangular Elements for an Advection-Diffusion Problem. IMA J. Numer. Anal. 14 (1994) 257-276. | Zbl | MR
[13] , Finite Volume and Finite Volume Element Methods for Nonsymmetric Problems. Ph.D. thesis, Texas A&M University (1996).
[14] , Numerical Solution of Convection-Diffusion Problems. Chapman and Hall, London (1996). | Zbl | MR
[15] , and , Analysis of a Cell-Vertex Finite Volume Method for Convection-Diffusion Problems, Math. Comp. 66 (1997) 1369-1406. | Zbl | MR
[16] , and , Numerical Methods for Singularly Perturbed Differential Equations. Springer, London(1996). | Zbl | MR
[17] and , Finite Element Methods for Convection-Diffusion Problems Using Exponential Splines on Triangles. Comput. Math. Appl 35 (1998) 35-45. | Zbl | MR
[18] , and , A Nonconforming Exponentially Fitted Finite Element Method for Two-Dimensional Drift-Diffusion Models in Semiconductors. Numer. Methods Partial Differential Equations 15 (1999) 133-150. | Zbl | MR
[19] and , Convergence Analysis of a Cell-Centered FVM, in Finite Volumes for Complex Applications II, R. Vilsmeier, F. Benkhaldoun and D. Hänel Eds., Hermes, Paris (1999) 181-188. | Zbl | MR
[20] , Spline Functions: Basic Theory. Wiley, New York (1981). | Zbl | MR
[21] , Analysis and Simulation of Semiconductor Devices. Springer, Wien (1984).
[22] , Variational Crimes in the Finite Element Method, in The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, A.K. Aziz Ed., Academic Press (1972) 689-710. | Zbl | MR
[23] and , Convergence Analysis of a Finite Volume Method via a New Nonconforming Finite Element Method. Numer. Methods Partial Differential Equations 14 (1998) 213-231. | Zbl | MR
[24] , Convergence Analysis for an Exponentially Fitted FVM. Preprint MATH-NM-09-99, TU Dresden (1999).
[25] and , A Monotone Finite Element Scheme for Convection-Diffusion Equations. Math. Comp. 68 (1999) 1429-1446. | Zbl | MR





