@article{M2AN_2000__34_5_1087_0,
author = {Croisille, Jean-Pierre},
title = {Finite volume box schemes and mixed methods},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {1087--1106},
year = {2000},
publisher = {Dunod},
volume = {34},
number = {5},
mrnumber = {1837769},
zbl = {0966.65082},
language = {en},
url = {https://www.numdam.org/item/M2AN_2000__34_5_1087_0/}
}
Croisille, Jean-Pierre. Finite volume box schemes and mixed methods. ESAIM: Modélisation mathématique et analyse numérique, Tome 34 (2000) no. 5, pp. 1087-1106. https://www.numdam.org/item/M2AN_2000__34_5_1087_0/
[1] , , and , Estimateur d'erreur a posteriori hiérarchique. Application aux éléments finis mixtes. Numer. Math. 80 (1998) 159-179. | Zbl | MR
[2] and , Mixed and non-conformmg finite elements methods: implementation, post processing and error estimates. RAIRO - Modél. Math. Anal. Numér. 19 (1985) 7-32. | Zbl | MR | Numdam
[3] , Error-Bounds for Finite Elements Method. Numer. Math. 16 (1971) 322-333. | Zbl | MR
[4] and , Some error estimates for the box method. SIAM J. Numer. Anal. 24 (1987) 777-787. | Zbl | MR
[5] , and , Connection between finite volume and mixed finite element methods. RAIRO - Modél. Math. Anal. Numér. 30 (1996) 445-465. | Zbl | MR | Numdam
[6] , and , Un problème variationnel abstrait. Application à une méthode de collocation pour les équations de Stokes. C. R. Acad. Sci. Paris, t. 303, Série I 19 (1986) 971-974. | Zbl | MR
[7] , and , Generalized inf-sup conditions for Chebyshev spectral approximation of the Stokes problem. SIAM J. Numer. Anal. 25 (1988) 1237-1271. | Zbl | MR
[8] , Finite Elements. Cambridge Univ. Press (1997). | Zbl | MR
[9] and , The mathematical theory of finite element methods. Texts Appl. Math. 15 (1994) Springer, New-York. | Zbl | MR
[10] , On the existence, umqueness and approximation of saddle-point problems, arising from lagrangian multipliers. RAIRO 8 (1974) R-2, 129-151. | Zbl | MR | Numdam
[11] and , Mixed and Hybrid Finite Element Methods. Springer Series Comp. Math. 15, Springer Verlag, New-York (1991). | Zbl | MR
[12] , and , Two families of Mixed Finite Element for second order elliptic problems. Numer. Math. 47 (1985) 217-235. | Zbl | MR
[13] , and , The finite volume element method for diffusion equations on general triangulations. SIAM J. Numer. Anal. 28 (1991) 392-402. | Zbl | MR
[14] , and , A class of central bidiagonal schemes with implicit boundary conditions for the solution of Euler's equations. AIAA-83-0126 (1983).
[15] , Box-schemes for First Order Partial Differential Equations. Adv. Comp. Fluid Dynamics, Gordon Breach Publ. (1995) 307-331.
[16] , A Conservative Box-scheme for the Euler Equations. Int. J. Num. Meth. Fluids (to appear) | Zbl | MR
[17] and , A "box-scheme" for the Euler equations. Lect. Notes Math. 1270, Springer-Verlag, Berlin (1987) 82-99. | Zbl | MR
[18] , and , Convergence rate of a finite volume scheme for a two dimensional convection-diffusion problem. Math. Model. Numer. 33 (1999) 493-516. | Zbl | MR | Numdam
[19] , Schémas boîte en réseau triangulaire, Rapport technique 18/3446 EN (1992), ONERA, unpublished.
[20] , Schémas à deux points pour la simulation numérique des écoulements, La Recherche Aérospatiale n°4 (1990) 21-46. | Zbl
[21] , Étude d'une famille de schémas boîtes à deux points et application a la dynamique des gaz monodimensionnelle, La Recherche Aérospatiale n° 5 (1991) 31-44.
[22] and , Finite Volume Box Schemes on triangular meshes. Math. Model Numer. 32 (1998) 631-649. | Zbl | MR | Numdam
[23] , Finite Volume Box Schemes, in Proc. of the 2nd Int. Symp. on Finite Volume for Complex Applications. Hermes, Paris (1999). | Zbl | MR
[24] and , Conforming and non conformmg finite element methods for solvmg the stationary Stokes equations I. RAIRO 7 (1973) R-3, 33-76. | Zbl | MR | Numdam
[25] , Finite volumes and mixed Petrov-Galerkin finite elements; the unidimensional problem. Num. Meth. PDE (to appear). | Zbl | MR
[26] , and , Finite Volume Methods, in Handbook of Numerical Analysis, Ciarlet-Lions Eds. 5 (1997). | Zbl
[27] and , The reformulation and numerical solution of certain nonclassical initial-boundary value problems. SIAM J. Sci. Stat. Comput. 12 (1991) 127-144. | Zbl | MR
[28] and , A class of implicit upwind schemes for Euler equations on unstructured grids. J. Comp. Phys. 84 (1989) 174-206. | Zbl | MR
[29] and , Finite Element Approximation of the Navier-Stokes equations. Lect. Notes Math. 749, Springer, Berlin (1979). | Zbl | MR
[30] , On first and second order box schemes. Computing 41 (1989) 277-296. | Zbl | MR
[31] , A new difference scheme for parabolic problems, Numerical solutions of partial differential equations, II, B. Hubbard Ed., Academic Press, New-York (1971) 327-350. | Zbl | MR
[32] , and , Coupling mixed and finite volume discretizations of convection-diffusion-reaction equations on non-matching grids, in Proc. of the 2nd Int. Symp. on Finite Volume for Complex Applications, Hermes, Paris (1999). | Zbl | MR
[33] , An inexpensive method for the evaluation of the solution of the lowest order Raviart-Thomas mixed method. SIAM J. Numer. Anal. 22 (1985) 493-496. | Zbl | MR
[34] and , Nonlinear moving boundary problems and a Keller box scheme. SIAM J. Numer. Anal. 21 (1984) 883-893. | Zbl | MR
[35] , Existence, uniqueness and approximation for generalized saddle point problems. SIAM J. Numer. Anal. 19 (1982) 349-357. | Zbl | MR
[36] and , A mixed finite element method for 2nd order elliptic problems. Lect. Notes Math. 606, Springer-Verlag, Berlin (1977) 292-315. | Zbl | MR
[37] , Convergence of finite volume schemes for Poisson's equation on non-uniform meshes. SIAM J. Numer. Anal. 28 (1991) 1419-1430. | Zbl | MR
[38] , The accuracy of cell vertex finite volume methods on quadrilateral meshes. Math. of Comp. 59 (1992) 59-382. | Zbl | MR
[39] , Box Schemes on quadrilateral meshes. Computing 51 (1993) 271-292. | Zbl | MR
[40] and , Mixed Finite Volume methods. Int. J. Num. Meth. Eng. 45 (1999) to appear. | Zbl | MR
[41] , Application of compact difference schemes to the conservative Euler equations for one-dimensional flows. NASA Tech. Mem. 83262 (1982).
[42] and , Implicit conservative schemes for the Euler equations. AIAA J. 24 (1986) 215-233. | Zbl | MR
[43] , , and , A new formulation of the Mixed Finite Element Method for solving elliptic and parabolic PDE. J. Comp. Phys. 149 (1999) 148-167. | Zbl | MR





