@article{M2AN_2000__34_4_749_0,
author = {Canc\`es, Eric and Le Bris, Claude},
title = {On the convergence of {SCF} algorithms for the {Hartree-Fock} equations},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {749--774},
year = {2000},
publisher = {Dunod},
volume = {34},
number = {4},
mrnumber = {1784484},
zbl = {1090.65548},
language = {en},
url = {https://www.numdam.org/item/M2AN_2000__34_4_749_0/}
}
TY - JOUR AU - Cancès, Eric AU - Le Bris, Claude TI - On the convergence of SCF algorithms for the Hartree-Fock equations JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2000 SP - 749 EP - 774 VL - 34 IS - 4 PB - Dunod UR - https://www.numdam.org/item/M2AN_2000__34_4_749_0/ LA - en ID - M2AN_2000__34_4_749_0 ER -
%0 Journal Article %A Cancès, Eric %A Le Bris, Claude %T On the convergence of SCF algorithms for the Hartree-Fock equations %J ESAIM: Modélisation mathématique et analyse numérique %D 2000 %P 749-774 %V 34 %N 4 %I Dunod %U https://www.numdam.org/item/M2AN_2000__34_4_749_0/ %G en %F M2AN_2000__34_4_749_0
Cancès, Eric; Le Bris, Claude. On the convergence of SCF algorithms for the Hartree-Fock equations. ESAIM: Modélisation mathématique et analyse numérique, Tome 34 (2000) no. 4, pp. 749-774. https://www.numdam.org/item/M2AN_2000__34_4_749_0/
[1] and , Convergent iterative methods for the Hartree eigenproblem. RAIRO Modél. Math. Anal. Numér. 28 (1994) 575-610. | Zbl | MR | Numdam
[2] , , and , There are no unfilled shells in unrestricted Hartree-Fock theory. Phys. Rev. Lett. 72 (1994) 2981-2983.
[3] and , General properties of the Hartree-Fock problem demonstrated on the frontier orbital model. II. Analysis of the customary iterative procedure. Theoret. Chim. Acta 36 (1975) 163-180.
[4] and , A general relation between the intrinsic convergence properties of SCF Hartree-Fock calculations and the stability conditions of their solutions. J. Chem. Phys. 79 (1983) 3421-3423.
[5] , Optimization of SCF LCAO wave functions. Mol. Phys. 19 (1970) 55-63.
[6] , The calculation of atomic structures. Wiley (1957). | Zbl | MR
[7] , , and , Ab initio molecular orbital theory. Wiley (1986).
[8] and , A new direct minimization algorithm for Hartree-Fock calculations. Progr. Theoret. Phys. 54 (1975) 1266-1281.
[9] and , On convergence difficulties in the iterative Hartree-Fock procedure. J. Chem. Phys. 55 (1971) 2408-2413.
[10] , Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation. Stud. Appl. Math. 57 (1977) 93-105. | Zbl | MR
[11] , Bound on the maximum negative ionization of atoms and molecules. Phys. Rev. A 29 (1984) 3018-3028.
[12] and , The Hartree-Fock theory for Coulomb Systems. Comm. Math. Phys. 53 (1977) 185-194. | MR
[13] , Solutions of Hartree-Fock equations for Coulomb systems. Comm. Math. Phys. 109 (1987) 33-97. | Zbl | MR
[14] , The density matrix in self-consistent field theory. I. Iterative construction of the density matrix. Proc. Roy. Soc. London Ser. A 235 (1956) 496-509. | Zbl | MR
[15] , Methods of molecular Quantum Mechanics. Academic Press (1992).
[16] , Hartree-Fock stability and symmetry breaking, in Self Consistent Field Theory and Application. Elsevier (1990) 1-45.
[17] , Improved SCF convergence acceleration. J. Comput. Chem. 3 (1982) 556-560.
[18] and , Methods of modern mathematical physics. I. Functional analysis. Academic Press (1980). | Zbl | MR
[19] and , Methods of modern mathematical physics. IV. Analysis of operators. Academic Press (1978). | Zbl | MR
[20] , New developments in molecular orbital theory. Rev. Modern Phys. 23 (1951) 69-89. | Zbl
[21] and , A "level-shifting" method for converging closed shell Hartree-Fock wave functions. Int. J. Quantum Chem. 7 (1973) 699-705.
[22] and , Do you have SCF stability and convergence problems?, in Computational Advances in Organic Chemistry, Kluwer Academic (1991) 167-185.
[23] and , Self-consistent molecular orbital methods. XVI. Numerically stable direct energy minimization procedures for solution of Hartree-Fock equations. J. Chem. Phys. 65 (1976) 265-271.
[24] , The existence and cure of intrinsic divergence in closed shell SCF calculations. J. Chem. Phys. 75 (1981) 3426-3432.
[25] , Intrinsic convergence in closed-shell SCF calculations. A general criterion. J. Chem. Phys. 75 (1981) 5416-5422.
[26] and , A dynamical damping scheme for converging molecular SCF calculations. Chem. Phys. Lett. 62 (1979) 550-554.






