@article{M2AN_2000__34_3_687_0,
author = {Chen, Zhiming and Du, Qiang},
title = {An upwinding mixed finite element method for a mean field model of superconducting vortices},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {687--706},
year = {2000},
publisher = {Dunod},
volume = {34},
number = {3},
mrnumber = {1763531},
zbl = {1078.82548},
language = {en},
url = {https://www.numdam.org/item/M2AN_2000__34_3_687_0/}
}
TY - JOUR AU - Chen, Zhiming AU - Du, Qiang TI - An upwinding mixed finite element method for a mean field model of superconducting vortices JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2000 SP - 687 EP - 706 VL - 34 IS - 3 PB - Dunod UR - https://www.numdam.org/item/M2AN_2000__34_3_687_0/ LA - en ID - M2AN_2000__34_3_687_0 ER -
%0 Journal Article %A Chen, Zhiming %A Du, Qiang %T An upwinding mixed finite element method for a mean field model of superconducting vortices %J ESAIM: Modélisation mathématique et analyse numérique %D 2000 %P 687-706 %V 34 %N 3 %I Dunod %U https://www.numdam.org/item/M2AN_2000__34_3_687_0/ %G en %F M2AN_2000__34_3_687_0
Chen, Zhiming; Du, Qiang. An upwinding mixed finite element method for a mean field model of superconducting vortices. ESAIM: Modélisation mathématique et analyse numérique, Tome 34 (2000) no. 3, pp. 687-706. https://www.numdam.org/item/M2AN_2000__34_3_687_0/
[1] and , The mathematical theory of finite element methods. Springer-Verlag, New York (1994). | Zbl | MR
[2] and Mixed and Hybrid Finite Element Methods. Springer, New York (1991). | Zbl | MR
[3] , A mean-field model of superconductmg vortices in three dimensions. SIAM J. Appl. Math. 55 (1995)1259-1274. | Zbl | MR
[4] and , Motion of vortices in type-II superconductors. SIAM J. Appl. Math. 55 (1995) 1275-1296. | Zbl | MR
[5] , , and , A mean-field model of superconducting vortices. Euro J. Appl. Math. 7 (1996) 97-111. | Zbl | MR
[6] and , Adaptive Galerkin methods with error control for a dynamical Ginzburg-Landau model in superconductwity. (Preprint, 1998). | Zbl | MR
[7] , and , The Runge-Kutta local project ion discontinuos galerkin finite element method for conservation laws IV: The multidimensional case. Math. Com. 54 (1990) 545-581. | Zbl | MR
[8] , Convergence analysis of a hybrid numerical method for a mean field model of superconducting vortices. SIAM Numer. Analysis, (1998).
[9] , , and , Analysis and approximation of the Ginzburg-Landau model of superconductivity. SIAM Review 34 (1992) 54-81. | Zbl | MR
[10] , , and , Computational simulations of type-II superconductivity including pinnnig mechanisms. Phys. Rev. B 51 (1995) 16194-16203.
[11] , and , Analysis and computation of a mean field model for superconductivity. Numer. Math. 81 539-560 (1999). | Zbl | MR
[12] and , High-kappa limit of the time dependent Ginzburg-Landau model for superconductivity. SIAM J. Appl. Math. 56 (1996) 1060-1093. | Zbl | MR
[13] , Dynamics of vortices in Ginzburg-Landau theories with applications to superconductivity. Phys. D. 77 (1994) 383-404. | Zbl | MR
[14] and , Numerical analysis of a mean field model of superconductivity, preprint.
[15] and , Finite Element Methods for Navier-Stokes Equations. Springer, Berlin (1986). | Zbl | MR
[16] , Elliptic Problems on Non-smooth Domains. Pitman, Boston (1985). | Zbl
[17] and , Evolution of Mixed-state Régions in type-II superconductors. SIAM J. Math. Anal. 29 (1998) 1002-1021. | Zbl | MR
[18] and , On a Finite Element Method for Solving the Neutron Transport equation, in Mathematical Aspects of the Finite Element Method in Partial Differential Equations, C. de Boor Ed., Academic Press, New York (1974). | Zbl
[19] , On the Bean critical-state model of superconductivity. Euro J. Appl. Math. 7 (1996) 237-247. | Zbl | MR
[20] , The Bean model in superconductivity variational formulation and numerical solution. J. Com. Phys. 129 (1996) 190-200. | Zbl | MR
[21] and , A mixed element method for 2nd order elliptic problems, in Mathematical Aspects of the Finite Element Method) Lecture Notes on Mathematics, Springer, Berlin 606 (1977). | Zbl
[22] and , Analysis of a mean field model of superconducting vortices, (preprint). | Zbl
[23] , Navier-Stokes equations, Theory and Numerical Analysis North-Holland, Amsterdam (1984). | Zbl | MR





