@article{M2AN_2000__34_3_663_0,
author = {B\v{e}l{\'\i}k, Pavel and Luskin, Mitchell},
title = {Stability of microstructure for tetragonal to monoclinic martensitic transformations},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {663--685},
year = {2000},
publisher = {Dunod},
volume = {34},
number = {3},
mrnumber = {1763530},
zbl = {0981.74042},
language = {en},
url = {https://www.numdam.org/item/M2AN_2000__34_3_663_0/}
}
TY - JOUR AU - Bělík, Pavel AU - Luskin, Mitchell TI - Stability of microstructure for tetragonal to monoclinic martensitic transformations JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2000 SP - 663 EP - 685 VL - 34 IS - 3 PB - Dunod UR - https://www.numdam.org/item/M2AN_2000__34_3_663_0/ LA - en ID - M2AN_2000__34_3_663_0 ER -
%0 Journal Article %A Bělík, Pavel %A Luskin, Mitchell %T Stability of microstructure for tetragonal to monoclinic martensitic transformations %J ESAIM: Modélisation mathématique et analyse numérique %D 2000 %P 663-685 %V 34 %N 3 %I Dunod %U https://www.numdam.org/item/M2AN_2000__34_3_663_0/ %G en %F M2AN_2000__34_3_663_0
Bělík, Pavel; Luskin, Mitchell. Stability of microstructure for tetragonal to monoclinic martensitic transformations. ESAIM: Modélisation mathématique et analyse numérique, Tome 34 (2000) no. 3, pp. 663-685. https://www.numdam.org/item/M2AN_2000__34_3_663_0/
[1] , Sobolev Spaces. Academic Press, New York (1975). | Zbl | MR
[2] and , Fine phase mixtures as minimizers of energy. Arch. Rat. Mech. Anal. 100 (1987) 13-52. | Zbl | MR
[3] and , Proposed experimental tests of a theory of fine microstructure and the two-well problem. Phil. Trans. R. Soc. Lond. A 338 (1992) 389-450. | Zbl
[4] , Self accomodation in martensite. Arch. Rat. Mech. Anal. 120 (1992) 201-244. | Zbl | MR
[5] and , Relaxation of some multiwell problems, in Proc. R. Soc. Edinburgh: Section A, to appear. | Zbl
[6] , and , The simply laminated microstructure in martensitic crystals that undergo a cubic to orthorhombic phase transformation. Arch. Rat. Mech. Anal. 149 (2000) 123-154. | Zbl | MR
[7] and , Approximation of infima in the calculus of variations. J. Comput. Appl. Math. 98 (1998) 273-287. | Zbl | MR
[8] and , Numerical solution of the scalar double-well problem allowing microstructure. Math. Comp., 66 (1997) 997-1026. | Zbl | MR
[9] and , Adaptive algorithms for scalar non-convex variational problems. Appl. Numer. Math. 26 (1998) 203-216. | Zbl | MR
[10] , Numerical analysis of oscillations in nonconvex problems. Numer. Math. 59 (1991) 747-767. | Zbl | MR
[11] and , Numerical approximations in variational problems with potential wells. SIAM J. Numer. Anal. 29 (1992) 1002-1019. | Zbl | MR
[12] , , and , Numerical analysis of oscillations in multiple well problems. Numer. Math. 70 (1995) 259-282. | Zbl | MR
[13] and , Equilibrium configurations of crystals. Arch. Rat. Mech. Anal. 103 (1988) 237-277. | Zbl | MR
[14] and , Sharp energy estimates for finite element approximations of nonconvex problems. (preprint, 1997).
[15] , , and , Numerical approximation of the solution of a variational problem with a double well potential. SIAM J. Numer. Anal. 28 (1991) 321-332. | Zbl | MR
[16] and , Optimal order estimates for the finite element approximation of the solution of a nonconvex variational problem. Math. Comp. 57 (1991) 621-637. | Zbl | MR
[17] , Direct methods in the calculus of variations. Springer-Verlag, Berlin, (1989). | Zbl | MR
[18] , Numerical computation of rank-one convex envelopes. SIAM. J. Numer. Anal. 36 (1999) 1621-1635. | Zbl | MR
[19] , On the convergence of finite element approximations of a relaxed variational problem. SIAM J. Numer Anal. 28 (1991) 419-436. | Zbl | MR
[20] and , Prediction of microstructure in monoclinic LaNbO4 by energy minimization. Acta Mater. 45 (1997) 4271-4281.
[21] and , Characterizations of gradient Young measures. Arch. Rat. Mech. Anal. 115 (1991) 29-365. | Zbl | MR
[22] , Numerical approach to double well problems. SIAM. J. Numer Anal. 35 (1998) 1833-1849. | Zbl | MR
[23] and , Finite element analysis of microstructure for the cubic to tetragonal transformation. SIAM J. Numer. Anal. 35 (1998) 376-392. | Zbl | MR
[24] and , Nonconforming finite element approximation of crystalline microstructure. Math. Comp. 67(223) (1998) 917-946. | Zbl | MR
[25] and , Approximation of a martensitic laminate with varying volume fractions. Math. Model. Numer. Anal. 33 (1999) 67-87. | Zbl | MR | Numdam
[26] , Simultaneous numerical approximation of microstructures and relaxed minimizers. Numer. Math. 78 (1997) 21-38. | Zbl | MR
[27] , Approximation of a laminated microstructure for a rotationally invariant, double well energy density. Numer. Math. 75 (1996) 205-221. | Zbl | MR
[28] , On the computation of crystalline microstructure. Acta. Numer. (1996) 191-257. | Zbl | MR
[29] and , Analysis of the finite element approximation of microstructure in micromagnetics. SIAM J. Numer. Anal. 29 320-331. | Zbl | MR
[30] and , Strong convergence of numerical solutions to degenerate variational problems. Math. Comp. 64 (1995) 117-127. | Zbl | MR
[31] , Numerical approximation of parametrized measures. Num. Funct. Anal. Opt. 16 (1995) 1049-1066. | Zbl | MR
[32] , On the numerical analysis of non-convex variational problems. Numer. Math. 74 (1996) 325-336. | Zbl | MR
[33] , Numerical approximation of relaxed variational problems. J. Convex. Anal. 3 (1996) 329-347. | Zbl | MR
[34] , Crystallography of the tetragonal → monoclinic transformation in zirconia. J. Phys. IV Colloq. France 5 (1995). C81121-C81126.
[35] , Twin and habit plane microstructures due to the tetragonal to monoclinic transformation of zircoma. J. Mech. Phys. Solids 45 (1997) 261-292.
[36] , Lower-semicontinuity of variational integrals and compensated compactness, in Proceedings ICM 94, Zürich (1995) Birkhäuser. | Zbl | MR
[37] , Compensated compactness and applications to partial differential equations, in Nonlinear analysis and mechanics,R. Knops, Ed., Pitman Research Notes in Mathematics, London 39 (1978) 136-212. | Zbl | MR
[38] , Twinning in minerals and metals remarks on the comparison of a thermoelasticity theory with some available experimental results. Atti Acc. Lincei Rend. Fis. 82 (1988) 725-756. | Zbl






