@article{M2AN_2000__34_2_353_0,
author = {Foias, Ciprian and Jolly, Michael S. and Manley, Oscar P.},
title = {Limiting behavior for an iterated viscosity},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {353--376},
year = {2000},
publisher = {Dunod},
volume = {34},
number = {2},
mrnumber = {1765664},
zbl = {0962.76022},
language = {en},
url = {https://www.numdam.org/item/M2AN_2000__34_2_353_0/}
}
TY - JOUR AU - Foias, Ciprian AU - Jolly, Michael S. AU - Manley, Oscar P. TI - Limiting behavior for an iterated viscosity JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2000 SP - 353 EP - 376 VL - 34 IS - 2 PB - Dunod UR - https://www.numdam.org/item/M2AN_2000__34_2_353_0/ LA - en ID - M2AN_2000__34_2_353_0 ER -
%0 Journal Article %A Foias, Ciprian %A Jolly, Michael S. %A Manley, Oscar P. %T Limiting behavior for an iterated viscosity %J ESAIM: Modélisation mathématique et analyse numérique %D 2000 %P 353-376 %V 34 %N 2 %I Dunod %U https://www.numdam.org/item/M2AN_2000__34_2_353_0/ %G en %F M2AN_2000__34_2_353_0
Foias, Ciprian; Jolly, Michael S.; Manley, Oscar P. Limiting behavior for an iterated viscosity. ESAIM: Modélisation mathématique et analyse numérique, Special Issue for R. Temam's 60th birthday, Tome 34 (2000) no. 2, pp. 353-376. https://www.numdam.org/item/M2AN_2000__34_2_353_0/
[1] and , Navier-Stokes Equations, Univ. Chicago Press, Chicago, IL (1988). | Zbl | MR
[2] and , Book Linear Operators, Wiley, New York (1958) Part II. | Zbl
[3] , What do the Navier-Stokes equations tell us about turbulence? in Harmonic analysis and nonlinear differential equations (Riverside, CA, 1995). Contemp. Math. 208 (1997) 151-180. | Zbl | MR
[4] , and , Modelling of the interaction of small and large eddies in two-dimensional turbulent flows. RAIRO Modél. Math. Anal. Numér. 22 (1988) 93-118. | Zbl | MR | Numdam
[5] , and , Approximate inertial manifolds and effective viscosity in turbulent flows. Phys. Fluids A 3 (1991) 898-911. | Zbl | MR
[6] , and , Iterated approximate inertial manifolds for Navier-Stokes equations in 2-D. J. Math. Anal. Appl. 178 (1994) 567-583. | Zbl | MR
[7] , , and , Asymptotic analysis of the Navier-Stokes equations. Phys. D 9 (1983) 157-188. | Zbl | MR
[8] and , On the algebra of the curl operator in the Navier-Stokes equations (in preparation).
[9] , Inertial ranges in two-dimensional turbulence. Phys. Fluids 10 (1967) 417-1423.
[10] , On the theory of statistical and isotropic turbulence. Proc. Roy.Soc. Lond. Ser. A. 195 (1948) 402-406. | Zbl | MR
[11] , A mathematical example displaying features of turbulence. Comm. Appl. Math. 1 (1948) 303-322. | Zbl | MR
[12] , Infinite-dimensional Dynamical Systems in Mechanics and Physics, 2nd édition, Springer-Verlag, New York (1997). | Zbl | MR
[13] , Tooling up mathematics for engineering. Quarterly Appl. Math. 1 (1943) 2-6.






