@article{M2AN_2000__34_1_139_0,
author = {Piperno, Serge},
title = {$L^2$-stability of the upwind first order finite volume scheme for the {Maxwell} equations in two and three dimensions on arbitrary unstructured meshes},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {139--158},
year = {2000},
publisher = {Dunod},
volume = {34},
number = {1},
mrnumber = {1735972},
zbl = {0949.65104},
language = {en},
url = {https://www.numdam.org/item/M2AN_2000__34_1_139_0/}
}
TY - JOUR AU - Piperno, Serge TI - $L^2$-stability of the upwind first order finite volume scheme for the Maxwell equations in two and three dimensions on arbitrary unstructured meshes JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2000 SP - 139 EP - 158 VL - 34 IS - 1 PB - Dunod UR - https://www.numdam.org/item/M2AN_2000__34_1_139_0/ LA - en ID - M2AN_2000__34_1_139_0 ER -
%0 Journal Article %A Piperno, Serge %T $L^2$-stability of the upwind first order finite volume scheme for the Maxwell equations in two and three dimensions on arbitrary unstructured meshes %J ESAIM: Modélisation mathématique et analyse numérique %D 2000 %P 139-158 %V 34 %N 1 %I Dunod %U https://www.numdam.org/item/M2AN_2000__34_1_139_0/ %G en %F M2AN_2000__34_1_139_0
Piperno, Serge. $L^2$-stability of the upwind first order finite volume scheme for the Maxwell equations in two and three dimensions on arbitrary unstructured meshes. ESAIM: Modélisation mathématique et analyse numérique, Tome 34 (2000) no. 1, pp. 139-158. https://www.numdam.org/item/M2AN_2000__34_1_139_0/
[1] , , and , Electromagnetics via the Taylor-Galerkin finite element method on unstructured grids. J. Comput. Phys. 110 (1994) 310-319. | Zbl
[2] , and , Computational fluid mechanics and heat transfer, Hemisphere, McGraw-Hill, New York (1984). | Zbl | MR
[3] , and , Resolution of the non-stationary or harmonic Maxwell equations by a discontinuous finite element method. Application to an E.M.I. (electromagnetic impulse) case. Computing Methods in Applied Sciences and Engineering. Nova Science Publishers, Inc., New-York (1991) 405-422.
[4] and Eds., Handbook of Numerical Analysis, Vol. 1. North Holland-Elsevier Science Publishers, Amsterdam, New York, Oxford (1991). | Zbl | MR
[5] , and , Approximation des équations de Maxwell par des schémas décentrés en éléments finis. Technical Report RR-1601, INRIA (1992).
[6] and , Comparaison de deux méthodes de volumes finis en électromagnétisme. Technical Report RR-3166, INRIA (1997).
[7] , , and , A parallel FVTD Maxwell solver using 3D unstructured meshes, in 13th annual review of progress in applied computational electromagnetics, Monterey, California (1997).
[8] and Eds., Aspects récents en méthodes numériques pour les équations de Maxwell, Collection didactique INRIA, INRIA Rocquencourt, France (1998) 23-27.
[9] , Étude de schémas d'ordre élevé en volumes finis pour des problèmes hyperboliques. Application aux équations de Maxwell, d'Buler et aux écoulements diphasiques dispersés. Mathématiques appliquées, ENPC, janvier (1997).
[10] , and , The finite volume method. in Handbook for Numerical Analysis, North Holland-Elsevier Science Publishers, Amsterdam, New York, Oxford (to appear). | Zbl | MR
[11] and , A class of implicit upwind schemes for euler simulations with unstructured meshes. J. Comput. Phys. 84 (1989) 174-206. | Zbl | MR
[12] , High Resolution Schemes for Hyperbolic Conservation Laws. J. Comput. Phys. 49 (1983) 357-393. | Zbl | MR
[13] , and , On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev. 25 (1983) 36-61. | Zbl | MR
[14] , Artificial diffusion, upwind biasing, limiters and their effect on accuracy and multigrid convergence in transonic and hypersonic flows, in 11th AIAA Computational Fluid Dynamics Conference, Orlando, Florida, July 6-9 (1993), AIAA paper 93-3359.
[15] , Sur la résolution des systèmes hyperboliques du premier ordre par des méthodes d'éléments finis. Ph.D. thesis, Université de Paris VI, France (1975).
[16] and , A finite element solver for the Maxwell equations, in GAMNI-SMAI Conference on Numerical Methods for the Maxwell Equations, Paris, France (1989). SIAM, Philadelphia (1991).
[17] , A new finite volume scheme for solving Maxwell System. Technical Report RR-3725, INRIA (1999). | Zbl
[18] , and , Un nouveau schéma de type volumes finis appliqué aux équations de Maxwell en milieu hétérogène. Technical Report RR-3351, INRIA (1998).
[19] , A characteristic-based algorithm for solving 3D, time-domain Maxwell equations. In 30th Aerospace Sciences Meeting and Exhibit, Reno, Nevada. January 6-9 (1992), AIAA paper 92-0452.
[20] and , A comparative study of characteristic-based algorithms for the Maxwell equations. J. Comput. Phys. 125 (1996) 378-394. | Zbl | MR
[21] , and , A time-domain differential solver for electromagnetic scattering problems. Proc. IEEE 77 (1989) 709-720.
[22] , Re-inventing electromagnetics: supercomputing solution of Maxwell's equations via direct time integration on space grids. AIAA paper 92-0333 (1992).
[23] , Numerical analysis of electromagnetic wave scattering and interaction based on frequency-domain integral equation and method of moments techniques. Wave Motion 10 (1988) 493. | Zbl | MR
[24] , Towards the ultimate conservative difference scheme v: a second-order sequel to Godunov's method. J. Comput. Phys. 32 (1979) 361-370. | Zbl | MR
[25] , Convergence and error estimates in finite volume schemes for general multidimensional scalr conservation laws. I. Explicite monotone schemes. RAIRO Modél. Math. Anal. Numér. 28 (1994) 267-295. | Zbl | MR | Numdam
[26] and , Convergence de la méthode des volumes finis pour les systèmes de Friedrichs. C.R. Acad. Sci. Paris Sér. I Math. 3(325) (1997) 671-676. | Zbl | MR
[27] and , The modified equation approach to the stability and accuracy analysis of finite-difference methods. J. Comput. Phys. 14 (1974) 159-179. | Zbl | MR
[28] , Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Trans. Antennas and Propagation AP-16 (1966) 302-307. | Zbl






