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3D DOMAIN DECOMPOSITION METHOD COUPLING CONFORMING
AND NONCONFORMING FINITE ELEMENTS

ABDELLATIF AGOUZAL1, LAURENCE LAMOULIE2 AND JEAN-MARIE THOMAS3

Abs t rac t . This paper deals with the solution of problems involving partial differential équations
in E3. For three dimensional case, methods are useful if they require neither domain boundary regularity
nor regularity for the exact solution of the problem. A new domain décomposition method is therefore
presented which uses low degree finite éléments. The numerical approximation of the solution is easy,
and optimal error bounds are obtained according to suitable norms.
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1. INTRODUCTION

In three dimensions, the domain boundary regularity is obviously root of difficulties. For example some
bounded polyhedral domain have a continuous but not Lipschitzian boundary (cf. Fig. 1).

In this example, near the contact points between the two bars, nor Lipschitzian function exists that can fit
the domain boundary.

Numerical solution is harder because of the lack of regularity. Domain décomposition sometimes allows to
overcome this problem: a clever décomposition may lead to regular bounded subdomains, from an initial regular
domain. For Figure 1, a good choice is obviously the following one (cf. Fig. 2).

Matching unknowns on the interface is one of the difficulties one is faced with in domain décomposition
methods. Mesh parameters must not imposed on both sides of the interface by the chosen matching conditions.
Moreover numerical solution must be easy on sequential or parallel computers.

In the context of non matching grids, to our knowledge, three approaches are considered in literature: mortar
element methods, in a primai formulation [6] or in a dual formulation [2], hybrid methods [3,13], and primal-dual
coupling methods [4,10].

Allowing to achieve this goal, a domain décomposition method using low degree finite éléments is presented
hère. For the sake of shortness and simplicity, the method is exposed for the following model problem.

Assuming that ƒ is a given function in L2(Çl), find u solution of

f -Au = ƒ in ÎÎ,
l u = 0 onffi.
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FIGURE 1. A non Lipschitzian domain

FIGURE 2. Domain décomposition with regular bounded subdomains.

Interpolation results are fîrstly proved, which allows to analyse a domain décomposition method coupling
conforming and nonconforming finite éléments. A new formulation is then established that couples primai
and dual variables. The idea was first introducé in [4,10], and used for example in [5] for the coupling of Stokes
équations. Using low degree spaces for numerical approximation, optimal error bounds are obtained without
any condition on meshes and restricting regularity requirements on the solution.

2. A THREE DIMENSIONAL INTERPOLATION OPERATOR

Let T be a tetrahedron, let us dénote its faces by Fi, i = 1,..., 4. It is well known and immédiate to prove
that for each v G HX{T) , there exists a unique affine fonction H^v G Pi(T) such that:

vda./ ÜTvda = ƒ
J Fi JFi

So HT defme an interpolation operator; associated interpolation error bounds are now to be determined. The
following resuit will be helpful:

Lemma 2.1. As operator from HX(T) onto Pi(T), HT is continuons and for all u e iï1(T) the following
inequality holds:



u - UTu7v)i T = - ƒ (w - nTti)Aî;dx + Y / \ ~z—(u ~ nTii)d<7 \
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Proof. Assuming that u G H1^), by Green formula we have for ail regular test function v:

(

Then for ail affine function v, sine Av = 0 and / F (w — UTu)do- = 0, Î = 1,..., 4, this implies that

(u — ÜTU,v)iyT — 0.

So I IT^ is he orthogonal projection of u onto P±(T) for the scalar product of iJ1(T) and so

<

Using Lemma 2.1, standard arguments of finite éléments methods theory and functional interpolation of Hilbert
spaces, the following interpolation error bounds holds (see also [1] for similar resuit in two-dimensional case).

Theorem 2.1. There exists a constant C such that, for ail u G Hl+a(T), 0 < a < 1, we have

\u —.

3. CONFORMING-NONCONFORMING HYBRID FORMULATION

The following model problem is studied:

V: Assuming that ƒ is a given function in L2(Q), find u solution of

f —Au = ƒ in O,
L y, =r 0 on c/£&.

Assume that O, is an open connected subset of M3, which boundary dû is regular enough but may be not
Lipschitzian. O, is divided into two non overlapping subdomains Oi and ft2 supposed connected for simplicity.
The interface between Q1 and Vt2 is called E, and I \ — <9f^/E, £=1,2. For sake of simplicity, it is supposed that

Let Ui, i = 1, 2 dénote the restriction of u to the subdomain called fl^, i = 1, 2.

3.1. Continuous formulation

Few notations are needed:

Vi = iJori(^i) = {̂  ^ -ff1(ni) such that v^i = 0}, i — 1,2,

A = i?~1/2(S) dual space of iJ0 0 (E).

A continuous formulation of V is established dualizing the traces matching équation on the interface E.

Continuous hybrid formulation:

VH- Find (ui, u2, À) e Vi x F2 x A such that

{V(^i, ^2) £ Vi x V2, X]—1 ƒ0 g r a ( l ^i- grad Vidx — (À, (t?i — *

V/i e A, </x, (ni - U2)|E> = 0.

where (.,.) dénotes the duality pairing between i f~ 1 / 2(S) and HQ^Q (E).
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As it was shown by [12],. the following resuit holds:

Theorem 3.1. The problem (VH) has a unique solution satisfying the following equalities:

Remark 1. The solution would be also unique if a Dirichlet condition were imposed only on a subset of non
zero measure of Fi or F2- The local problems are well-posed if meas(I\) ^ 0, i = 1, 2.

Remark 2. The variational problem (VH) is equivalent to the saddle point problem for the Lagrangian

2,fj) = y \vi\\t ntàx - 2Y

3.2. Discrete formulation

Assume that f2, fii and ̂ 2 are now polyhedral open sets, without any crack. For i = 1,2, let % dénote a
regular triangulation according to Ciarlet [8] of Q ;̂ which mesh size is called hi. Neither compatibility condition
between triangulations, nor between mesh sizes h\ and /12 are imposed on both sides of S.

The discretization will need the following spaces and subsets:

i,/i = i^/i G Vi; Vi G Ti.ft, U|T <

Let 5^ dénote the set of tetrahedral faces included in Q2 Le.:

Sh = {F = dTi H ÔT2, (Ti, T2) G (72»2 and meas(ôTi n &T2) ^ 0}

and 5^ (Sfr) dénote the set of tetrahedral faces included in F2 (in E) Le.:

Si = {F = ô T n F 2 , r € 72,h and meas(ôTnF2) / 0};

5f = {F = ÔT n S, T € 75,^ and meas(9T n E) / 0} -

The spaces V2ih and A^ are defined by:

V2,h = {vh € L2(Q2);WT e T2th*Vh\T e ^i(T);

VF - dTx n ÖT2 G 5fc, f vh{Tlda - / ^!T2d<7, VF e S£, / ^ d a - 0}
J F «/F J F

and

Ah = {^ G L2(E); VF e 5^/xh | F G PoW} •

As V2ih is of nonconforming space type, it must equipped with the following broken norm

\

\v2,h\l, T
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The following discrete formulation is obtained from the {VH) formulation:
Discrete Hybrid conforming-nonconforming formulation:

VHD- Find (ulih,u2,h,\h) G Vhh x V2th x A^ such that

x Vith x V2th,

j T grad u2ih grad v2^hdx — J2 Àh{vi,h ~~ 2̂,/i)d<x =
Jn fvi,h^x + JQ fv2ijidx,

= 0

where ƒ dénotes the constant by triangle function, that is L2(n2)-projection of ƒ on the piecewise constant finite
element space. Modifying ƒ in the right-hand side of the équation on £l2 is equivalent to evaluate J ^ fv2jh
using numerical intégration formula.

The following resuit will be helpful:

Lemma 3.1. There exists a constant C > 0, independent of mesh parameters such that, «ƒ&(-, •) is the bilinear
form defined on V2 x A^ by

then

b(v2,Hh) . ^,, n , 77 _ A
sup -jj—jj > C/||/x/ l | |_i/2jE, jor ail jj*h G A^.

Proof. Introducing v2 solution to:

r -Av2 = 0 in ^ 2

l dv2/dn = jih on S
t v2 = 0 on r2

the Green formula leads to

Moreover trace theorem provides

Equivalence of norm and semi-norm in HQV2(CL2) allows to conclude.
The following theorem can then be proved.

Theorem 3.2. Problem (VHD) has a unique solution.

Proof. In the formulation of (PHD) appears the bilinear form a(.,.):

a((uith,u2th),(vlth,v2th)) = ƒ gradzii)/l.gradvi)/lda;+ ^ / grad u2jhgrad v2,hdx.
Jn± TGT2h

 T
TGT2>h

Therefore for each (viih,v2jh)'

a((vlih,v2th)i(viihiv2th)) = / || grad^i^H2 + Y] / || grad v2ihfdx
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(PHD) solution ( U I ^ J ^ / I ) belongs to the so-called Vh product space defined by

Vh = Vlth x V2fh.

The bilinear form a(.,.) is continuous and elliptic with respect to Vh norm.
If a((ulth,U2th),(uhh,u2lh)) = 0, then |ui,fc|i,ni = 0 and, for all T G 75,/*, |^2,h|i,T = 0, so ui,A = 0 and

u2ih = 0.
We shall now prove that the bilinear form &(.,.) defined by

= ƒ

must satisfy the following inf-sup condition: there exist a positive constant C, independent of ft, such that:

inf sup
Mfc|l-i/2fElKU:

One can notice that this condition is satisfied as soon as we have

inf ^ sup

that is to say

Jnf o sup |, "^'T"'i, > C.

Fortin's lemma is used to demonstrate this resuit [7]. Indeed

sup -—

SO

because the interpolation operator is continuous. Lemma 2.1 is then providing the resuit.
Existence and uniqueness of the solution are established.

Theorem 3.3. If the solution to PH is such that Ui = u^ G Hai(Qi) with 1 < Ci < 2, i = 1, 2, then we have
the following error bound for discrete problem PHD-'

Proof. A new formulation is necessary to make the proof easier: the weak matching condition is relaxed using
a primai hybrid formulation [7,12]. Arguments introduced by [12] allow to conclude the proof. In order to get
rid of regularity conditions on exact solution, introducing interpolation operators is useful, namely:

- for nonconforming variable, 11^ operator, for which error interpolation bounds have been given in Theo-
rem 1,

- for conforming variable, to avoid supposing that u G if3/2+€(H1), one can use a Clément interpolation
operator [9], which is defined from V\ onto Vi^.
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4. EQUIVALENCE WITH LOW DEGREE SEMI-PRIMAL SEMI-DUAL FORMULATION FOR 3D

Our aim is to establish a semi-primal semi-dual formulation [4,10], that is a formulation using for example
the primai unknown u on fîi and the dual unknown p on 1Î2-
The discrete formation comes from the conforming-nonconforming hybrid formulation (PHD)J previously estab-
lished. Indeed, if one chooses:

- uith used in the conforming-nonconforming hybrid formulation
- p2 ̂  defined on £l2 by:

p2jfc= gradu2,h-^(x - x r ) , for all T G T2,h (4.1)

where u2^h is the nonconforming unknown involed in the conforming-nonconforming hybrid formulation;
the triangle barycenter and ƒ the mean value of ƒ on T. Then (ux,hi P2>h) 'IS solution of semi-primal semi-dual
formulation associated to problem P. The above construction of p2 h from u2,h is similar in 3D to the one given
in2Dby [11].

Let W2ih defined by

w2th = {ph e fr(div,n2), VT e T2yhj Ph]T e RTx(T)} (4.2)

where RTx(T) = (P0(T))3 +
Some preliminary results are to be shown, what is done in the following lemmas.

Lemma 4.1. The vectorial function p2 ̂  defined by (4-1) belongs to Jï(div, ̂ 2).

Proof. On each T G 72,^, P2,h ̂  (L2(T))2 and — divp2 ^ = ƒ• One just needs then to show that

VTi,T2 e T2,h, with meas(9Ti H &T2) ̂  0, p2,fc.ni + P2,/i-^2 = 0 on F = dTx n dT2.

Let [p2)h-n] dénote the normal jump through any face F defined by

To obtain [p2^-n] = 0, one can show that JF[P2ih'n]vhà<r = 0, for the basis function Vh € V2,h associated to F
defined by

/ Vhda — 1
JF

and

for all face F' / F, / vhda = 0.
JF'

With the définition of [p2)^.w] and Green formulae, we have

f f f f f
JF ' JTX ' JT2 ' JT-L ' JT2

and from p2 ̂  définition, we obtain

— / grad u2th grad Vhdx + / grad u2^ grad i;̂ dx
t/Ti ' JT2

/ (x — x Ti) grad Vhdx — — / (x - x^) grad vudx — \ fvhdx — /
(/ Ti «/ T^ J T\ J 'T.
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Using the facts that u2lh, being the solution with right hand side ƒ, vérifies:

J grad u2,h grad vhdx + / grad u2jh grad Vhdx = / fvndx + /
Ti JT2 JTX JT

and that VT G 72,^, ƒ (x — x r ) d x = 0, we get the resuit
JT

JF
ƒ

JF

Lemma 4.2. 7%e vectorial function p2)^ belongs to W2,h, where the space W^.h is defined in (3,2).

Lemma 4.3. The function p2th satisfies:

V q 2 ) ^ % , with divq2ïft = O, / p2j / l q2)Adx - / uhhq2jh.nda.

Jn2 Ju

Proof Using Lemma 4.4 and 4.5, we have p 2 h G W2,h

ƒ
3 '

- ( x - xT)q2}hdx.

Because q2 ^ G W2ih-> q2,/ir
 c a n be written as q2)^ = a + f3x with a G M3 and /? G M; div q2 h — 0 implies that

/3 = 0 and q2 ^ — a.
It follows that

( x - x r ) q2,ftdx = q2)/l / ( x - x r )dx = 0
J T

so as divq2 ^ = 0 and Q2,hix ~ —-> f ° r a ^ T G 72,/i,

/ g r a d it2,/i Q2,/id:;c == / / U2,h ^.h^Tdcr = ^ ^ ^2,^i€ / Q2,?i*
T ' -71-'1" a T 'T"-""2,/. e edge of ar Je

where Û2ji\e = Se
u2,hda. Since q2 h G i?(div,r22), we have

q2^^T 1 | T i + q2)/l.nT2|T2 - 0

and u2,h G V2,ft implies

On the faces e included in 9Q, the contribution equals zero due to Drichlet condition. The non zero terms
corresponding to faces included in E, we have finally
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<l2,h,-nT £ Aft we get, from second équations of problem (PHD)-

/ u2ih<l2h-nxdo- = ƒ ulthq2h-
Js «/s

and then the resuit

Jn?

Lemma 4.4. The function p2h satisfies:

grad U2,/» grad v2)hdar = / p 2 ft / Jv2
Jn2

Proof For every v2jh G V2^ since gradt>2)ft G (PO(T))S and J T ( x -

f X^ f

~ / / P 2 ft g*"£id v2)ft —

= / p 2 ft.Ti£^2,/idcr -(- /

Lemma 4.5. The function p2 h satisfies:

= 0, we have

ƒ

S.

Proof. Comparing the équation established in Lemma 4.7 with the discrete hybrid conforming-nonconforming
formulation, and remarking that Xh is unique, and p2)ft.ns G Aft, the resuit is deduced.

Theorem 4.1. The functions (tii,ft, p2;ft) are solutions of the following semi-primal s emi-dual formulation (P3):

f Find (^i,ft, p2)ft) G V\^h x W .̂ft such that

ƒ,

Theorem 4.2. /ƒ tfte solution u to (PR) is such that
have the following error bound:

= U\Q. G Hai(Çli) with 1 < ai < 2, i~l}2} then we

p = grad u.

Proof From the p2h définition one gets:

T£T2}h

, where p = grad u.
o,r
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and global error splits into three ternis:

sn2 < \u-ulth- |i ) f i l + 5 1 \u ~ v>2,h\i,T + 5Z H ^ * " XT)| |O,T.

The final resuit follôws from the error bounds established in Theorem 4 and easy calculations.

5. CONCLUSION

Theorem 4.9. shows that (ui^, P2,/J is solution of a semi-primal semi-dual formulation, therefore both of the
unknowns are the approximation of the exact solution restriction to each subdomain. The continuity of p2)/l

across tetrahedrons interfaces is obtained by local correction of grad u2jh- This property is interesting, because
numerically a nonconforming allows to obtain a more powerful approximation, verifying flux compatibility.

Theorem 4.10 gives approximation error bounds, which are optimal without any compatibility condition on
the meshes. Moreover, one can note that the last term in the bound is dominated by the other two. In order
to provide a very flexible method, regularity required on the exact solution is weak, and may not be the same
on the two subdomains.
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