@article{M2AN_1999__33_3_517_0,
author = {Benedetto, Dario and Caglioti, Emanuele and Libero, Roberto},
title = {Non-trapping sets and {Huygens} principle},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {517--530},
year = {1999},
publisher = {EDP Sciences},
volume = {33},
number = {3},
mrnumber = {1713236},
zbl = {0935.35167},
language = {en},
url = {https://www.numdam.org/item/M2AN_1999__33_3_517_0/}
}
TY - JOUR AU - Benedetto, Dario AU - Caglioti, Emanuele AU - Libero, Roberto TI - Non-trapping sets and Huygens principle JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1999 SP - 517 EP - 530 VL - 33 IS - 3 PB - EDP Sciences UR - https://www.numdam.org/item/M2AN_1999__33_3_517_0/ LA - en ID - M2AN_1999__33_3_517_0 ER -
%0 Journal Article %A Benedetto, Dario %A Caglioti, Emanuele %A Libero, Roberto %T Non-trapping sets and Huygens principle %J ESAIM: Modélisation mathématique et analyse numérique %D 1999 %P 517-530 %V 33 %N 3 %I EDP Sciences %U https://www.numdam.org/item/M2AN_1999__33_3_517_0/ %G en %F M2AN_1999__33_3_517_0
Benedetto, Dario; Caglioti, Emanuele; Libero, Roberto. Non-trapping sets and Huygens principle. ESAIM: Modélisation mathématique et analyse numérique, Tome 33 (1999) no. 3, pp. 517-530. https://www.numdam.org/item/M2AN_1999__33_3_517_0/
[1] , Convex Surfaces, in Interscience Tracts in Pure and Applied Mathematics, No. 6, Interscience Publishers INC.,New York (1958). | Zbl | MR
[2] , and , Expansion of embedded curves with turning angle greater than -π. Invent. Math. 123 (1996) 415-429. | Zbl | MR
[3] and , Shape Analysis via Oriented Distance Functions J Funct. Anal. 123 (1994) 129-201. | Zbl | MR
[4] and , Measure Theory and fine properties of functions. CRC Press (1992). | Zbl | MR
[5] , Minimal surfaces and functions of bounded variation, in Notes on Pure Mathematics, Birkhäuser, Boston (1984). | Zbl | MR
[6] , Steiner type inequalities in plane geometry. Period. Polytech. Elec. Engrg. 3 (1959) 345-355. | MR
[7] , Elements of the Topology of the Plane Sets of Points. Cambridge University Press (1951). | Zbl | MR
[8] , Integral Geometry and Geometric Probability, in Encyclopedia of Mathematics and its applications, Addison-Wesley Pub (1976). | Zbl | MR





