@article{M2AN_1999__33_1_99_0,
author = {Wang, Song},
title = {A new exponentially fitted triangular finite element method for the continuity equations in the drift-diffusion model of semiconductor devices},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {99--112},
year = {1999},
publisher = {EDP Sciences},
volume = {33},
number = {1},
mrnumber = {1685746},
zbl = {0961.82030},
language = {en},
url = {https://www.numdam.org/item/M2AN_1999__33_1_99_0/}
}
TY - JOUR AU - Wang, Song TI - A new exponentially fitted triangular finite element method for the continuity equations in the drift-diffusion model of semiconductor devices JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1999 SP - 99 EP - 112 VL - 33 IS - 1 PB - EDP Sciences UR - https://www.numdam.org/item/M2AN_1999__33_1_99_0/ LA - en ID - M2AN_1999__33_1_99_0 ER -
%0 Journal Article %A Wang, Song %T A new exponentially fitted triangular finite element method for the continuity equations in the drift-diffusion model of semiconductor devices %J ESAIM: Modélisation mathématique et analyse numérique %D 1999 %P 99-112 %V 33 %N 1 %I EDP Sciences %U https://www.numdam.org/item/M2AN_1999__33_1_99_0/ %G en %F M2AN_1999__33_1_99_0
Wang, Song. A new exponentially fitted triangular finite element method for the continuity equations in the drift-diffusion model of semiconductor devices. ESAIM: Modélisation mathématique et analyse numérique, Tome 33 (1999) no. 1, pp. 99-112. https://www.numdam.org/item/M2AN_1999__33_1_99_0/
[1] , , Relaxation methods applied to determine the motion, in two dimensions, of a viscous fluid past a fixed cylinder. Quart. J. Mech. Appl Math. 8 (1955) 129-145. | Zbl | MR
[2] , , , , Some upwinding techniques for finite element approximations of convection-diffusion equations. Numer. Math. 58 (1990) 185-202. | Zbl | MR
[3] , , , Two-dimensional exponentially fitting and applications to semiconductor device equations. SIAM J. Numer. Anal 26 (1989) 1342-1355. | Zbl | MR
[4] , , , , Finite Element Analysis of Semiconductor Devices: The FIELDAY Program. IBM J. Res. Develop. 25, (1981) 218-231.
[5] , The finite element method for elliptic problems. North-Holland, Amsterdam (1978). | Zbl | MR
[6] , , , , Hexahedral finite elements for the stationary semiconductor device equations. Comp. Meth. Appl. Mech. Engrg. 84 (1990) 43-57. | Zbl | MR
[7] , A self-consistent iterative scheme for one-dimensional Steady State Transistor Calculation. IEEE Trans. Elec. Dev. 11 (1964) 455-465.
[8] , , Inverse-Average-Type Finite Element Discrétisations of Selfadjoint Second-Order Elliptic Problems. Math. Comp. 51 (1988) 431-449. | Zbl | MR
[9] , Discretization of the Semiconductor Device Equations. From New Problems and New Solutions for Device and Process Modelling. J.J.H. Miller Ed. Boole Press, Dublin (1985).
[10] and , A Triangular Mixed Finite Element Method for the Stationary Semiconductor Device Equations. RAIRO Modél. Math. Anal. Numér. 25 (1991) 441-463. | Zbl | MR | Numdam
[11] and , An analysis of the Scharfetter-Gummel box method for the stationary semiconductor device equations. RAIRO Modél. Math. Anal. Numér. 28 (1994) 123-140. | Zbl | MR | Numdam
[12] and , A tetrahedral mixed finite element method for the stationary semiconductor continuity equations. SIAM J. Numer. Anal. 31 (1994) 196-216. | Zbl | MR
[13] , Analysis of a Discretization Algorithm for Stationary Continuity Equations in Semiconductor Device Models. COMPEL 2 (1983) 117-139. | Zbl
[14] and , Large-signal analysis of a silicon read diode oscillator. IEEE Trans. Elec. Dev. 16 (1969) 64-77.
[15] , Discretization of time-dependent continuity equations. Proceedings of the 6th International NASECODE Conference. J.J.H. Miller Ed. Boole Press, Dublin (1988) 71-83. | Zbl | MR
[16] , Iterative Scheme for 1- and 2-Dimensional D.C.-Transistors. IEEE Trans. Elect. Dev. 24 (1977) 1123-1125.
[17] , The physics of semiconductor devices, 2nd ed. John Wiley & Sons, New York (1981).
[18] , Theory of Flow of Electrons and Holes in Germanium and Other Semiconductors. Bell Syst. Tech. J. 29 (1950) 560-607.





