@article{M2AN_1999__33_1_89_0,
author = {Zhou, Aihui},
title = {Multi-parameter asymptotic error resolution of the mixed finite element method for the {Stokes} problem},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {89--97},
year = {1999},
publisher = {EDP Sciences},
volume = {33},
number = {1},
mrnumber = {1685745},
zbl = {0917.76042},
language = {en},
url = {https://www.numdam.org/item/M2AN_1999__33_1_89_0/}
}
TY - JOUR AU - Zhou, Aihui TI - Multi-parameter asymptotic error resolution of the mixed finite element method for the Stokes problem JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1999 SP - 89 EP - 97 VL - 33 IS - 1 PB - EDP Sciences UR - https://www.numdam.org/item/M2AN_1999__33_1_89_0/ LA - en ID - M2AN_1999__33_1_89_0 ER -
%0 Journal Article %A Zhou, Aihui %T Multi-parameter asymptotic error resolution of the mixed finite element method for the Stokes problem %J ESAIM: Modélisation mathématique et analyse numérique %D 1999 %P 89-97 %V 33 %N 1 %I EDP Sciences %U https://www.numdam.org/item/M2AN_1999__33_1_89_0/ %G en %F M2AN_1999__33_1_89_0
Zhou, Aihui. Multi-parameter asymptotic error resolution of the mixed finite element method for the Stokes problem. ESAIM: Modélisation mathématique et analyse numérique, Tome 33 (1999) no. 1, pp. 89-97. https://www.numdam.org/item/M2AN_1999__33_1_89_0/
[1] , The finite element methods with Lagrangian multipliers. Numer. Math. 20 (1973) 179-192. | Zbl | MR
[2] and , Analysis of some finite elements of the Stokes problem. Math. Comp. 44 (1985) 71-79. | Zbl | MR
[3] , Asymptotic error expansion and defect correction in the finite element method Heidelberg (1990).
[4] , On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. RAIRO Modèl. Math. Anal. Numer. 2 (1974) 129-151. | Zbl | MR | Numdam
[5] , The Finite Element Method for Elliptic Problems. North-Holland(1978). | Zbl | MR
[6] , and , Sharp maximum norm error estimates for finite element approximation for the Stokes problem in 2-d. Math. Comp. 51 (1988) 491-506. | Zbl | MR
[7] , Old and new éléments for incompressible flows.Int. J. Numer. Meth. Fluids 1 (1981) 347-367. | Zbl | MR
[8] and , Finite Element Method for Navier-Stokes Equation, Theory and Algorithms. Springer-Verlag, Berlin and Heidelberg (1986). | Zbl | MR
[9] and , A regularity result for the Stokes problem in a polygon. J. Func. Anal. 21 (1976) 397-413. | Zbl | MR
[10] , and , Asymptotic expansions for finite element approximations. Research Report IMS-11, Chengdu Branch of Academia Sinica (1983). | Zbl | MR
[11] , and , A rectangle test for interpolated finite elements. in Proc. of Sys. Sci. & Sys. Eng. Great Wall (H.K.), Culture Publish Co. (1991), 217-229. | MR
[12] and , The Preprocessing and Postprocessing for the Finite Element Method. Shanghai Scientïfic & Technical Publishers (1994) (in Chinese).
[13] and , Difference Methods and their Extrapolation. Springer, New York (1983). | Zbl | MR
[14] , Extrapolation techniques in the finite element method (A Survey). in Proc. of the Summer School in Numer. Anal Helsinki (1988).
[15] , Navier-Stokes Equations North-Holland, Amsterdam (1979). | Zbl
[16] , Error estimates for a mixed finite element approximation of the Stokes equations. RAIRO Modèl. Math. Anal. Num. 18 (1984) 175-182. | Zbl | MR | Numdam
[17] , Global superconvergence approximations of the mixed finite element method for the Stokes problem and the linearelasticity equation. RAIRO Modèl. Math. Anal. Num. 30, 4 (1996), 401-411. | Zbl | MR | Numdam
[18] and , The full approximation accuracy for the stream function-vorticity-pressure method. Numer. Math. 68 (1994) 427-435. | Zbl | MR
[19] , and , A parallel algorithm based on multi-parameter asymptotic error expansion, in Proc. of Conference on Scientific Computing, Hong Kong (1994).
[20] , , and , A parallel muiti-parameter asymptotic error expansion and a parallel algorithm. Research Report IMS-61, Inst. Math. Sci., Academia Sinica (1994), see also Sys. Sci. & Math Scis. 10, 3 (1997). 253-260. | Zbl | MR






