@article{M2AN_1999__33_1_191_0,
author = {Cherfils, Laurence},
title = {Approximation of solution branches for semilinear bifurcation problems},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {191--207},
year = {1999},
publisher = {EDP Sciences},
volume = {33},
number = {1},
mrnumber = {1685752},
zbl = {0923.65077},
language = {en},
url = {https://www.numdam.org/item/M2AN_1999__33_1_191_0/}
}
TY - JOUR AU - Cherfils, Laurence TI - Approximation of solution branches for semilinear bifurcation problems JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1999 SP - 191 EP - 207 VL - 33 IS - 1 PB - EDP Sciences UR - https://www.numdam.org/item/M2AN_1999__33_1_191_0/ LA - en ID - M2AN_1999__33_1_191_0 ER -
%0 Journal Article %A Cherfils, Laurence %T Approximation of solution branches for semilinear bifurcation problems %J ESAIM: Modélisation mathématique et analyse numérique %D 1999 %P 191-207 %V 33 %N 1 %I EDP Sciences %U https://www.numdam.org/item/M2AN_1999__33_1_191_0/ %G en %F M2AN_1999__33_1_191_0
Cherfils, Laurence. Approximation of solution branches for semilinear bifurcation problems. ESAIM: Modélisation mathématique et analyse numérique, Tome 33 (1999) no. 1, pp. 191-207. https://www.numdam.org/item/M2AN_1999__33_1_191_0/
[1] , Sobolev spaces. Academic Press (1975). | Zbl | MR
[2] and , Numerical continuation methods, an introduction. Springer Verlag, Berlin (1990). | Zbl | MR
[3] and , The p - version of the finite element method for domains with corners and for infinite domains. Numer. Meth. PDE 6 (1990) 371-392. | Zbl | MR
[4] and , The h-p version of the finite element method with quasiuniform meshes. RAIRO Modél. Math.Anal. Numér. 21 (1987) 199-238. | Zbl | MR | Numdam
[5] Analyse fonctionnelle. Masson, Paris (1983). | Zbl | MR
[6] , and , Finite dimensional approximation of nonlinear problems, part 1: branches of nonsingular solutions. Numer. Math. 36 (1980) 1-36. | Zbl | MR
[7] , and , Finite dimensional approximation of nonlinear problems, part 2: limit points. Numer Math. 37 (1981) 1-28. | Zbl | MR
[8], , and , Finite dimensional approximation of nonlinear problems, part 3: simple bifurcation points. Numer. Math. 38: 19811-30. | Zbl | MR
[9] and , Numerical analysis for nonlinear and bifurcation problems. To appear in Handbook of Numerical Analysis, 1994. | MR
[10] , Méthode de cheminement adaptative pour les problèmes semi-linéaires dépendant d'un paramètre. Thèse de l'Université J. Founer, Grenoble I (1996).
[11] , Approximation des branches de solutions d'un problème de bifurcation semi-lineaire. C. R. Acad. Sci. Paris 324: (1997) 933-938. | Zbl | MR
[12] , Basic error estimates for elliptic problems. In Handbook of numencal analysis. Elsevier Science Publishers B. V., North-Holland (1991). | Zbl | MR
[13] and , On numerical approximation in bifurcation theory. Masson, Paris (1986). | Zbl | MR
[14] , Elliptic problems nonsmooth domains. Pitman, Boston (1985). | Zbl
[15] , Analyse numérique d'un problème aux limites non linéaire. Numer. Math. 37: (1981), 445-452. | Zbl | MR
[16] , Méthodes numériques pour les bifurcations statiques. collection R M A, Masson (1997). | MR
[17] and , Some optimal error estimates for piecewise linear finite element approximations, Math. Comp. 38 (1982) 437-445. | Zbl | MR
[18] , Résolution numérique de problèmes elliptiques dans des domaines avec coins. Thèse de l'Université de Rennes. (1978).
[19] and , Introduction à l'analyse numérique des équations aux dérivées partielles. Masson, Paris (1988). | Zbl
[20] , An efficient method for subtracting off singularities at corners for Laplace's equations J. Comput. Phys. 78 (1988) 369-377. | Zbl | MR






