@article{M2AN_1998__32_1_51_0,
author = {Chehab, Jean-Paul},
title = {Incremental unknowns method and compact schemes},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {51--83},
year = {1998},
publisher = {Elsevier},
volume = {32},
number = {1},
mrnumber = {1619593},
zbl = {0914.65110},
language = {en},
url = {https://www.numdam.org/item/M2AN_1998__32_1_51_0/}
}
Chehab, Jean-Paul. Incremental unknowns method and compact schemes. ESAIM: Modélisation mathématique et analyse numérique, Tome 32 (1998) no. 1, pp. 51-83. https://www.numdam.org/item/M2AN_1998__32_1_51_0/
[1] , , The Hierarchical Basis Multigrid Method, Numer. Math. 52, 1988, 4227-458. | Zbl | MR
[2] , , , Time-Stable Boundary Conditions for Finite Difference Schemes Solving Hyperbolic Systems: Methodology and Application to High-Order Compact Schemes, J. comp. Phys. 111, 1994, 220-236. | Zbl | MR
[3] , Incremental Unknowns for Solving Nonlinear Eigenvalue Problems. New Multiresolution Methods, Numencal Methods for PDE's, 11, 199-228 (1995). | Zbl | MR
[4] A Nonlinear Adaptative Multiresolution Method in Finite Differences with Incremental Unknowns, M2AN, Vol. 29, 4, 451-475, 1995. | Zbl | MR | Numdam
[5] Solution of Generalized Stokes Problems Using Hierarchical Methods and Incremental Unknowns, App. Num. Math., 21 (1996) 9-42. | Zbl | MR
[6] , , Incremental Unknows in Finite Differences in Space Dimension 3, Computational and Applied Mathematics, 14, 3, 1995, 1-15. | MR
[7] , Incremental Unknows for Solving Partial Differential Equations, Numesrische Mathematik, Springer Verlag, 59, 1991, 255-271. | Zbl | MR
[8] , Incremental Unknows in Finite Differences: Condition Number of the Matrix, SIAM. J. on Matrix Analysis and Applications (SIMAX), 14, n° 2, 1993, 432-455. | Zbl | MR
[9] , NonLinear Galerkin Method in Finite Difference case and Wavelet-like Incremental Unknowns, Numer. Math. 64, 1993, 271-294. | Zbl | MR
[10] , Nonlinearly Stable Compact Schemes for shock calculations, ICASE Preprint series, May 1992. | Zbl | MR
[11] The Numerical Treatment of Differential Equations, 3rd. ed., Springer Verlag, 1966. | Zbl | MR
[12] , , The Nonlinear Galerkin Method: A Multiscale Method Applied to the Simulationof Homogeneous Turbulent Flows, Theorical and Computational Fluid Dynamics 7, 4, 1995, 279-315. | Zbl
[13] Compact Finite Difference Schemes with Spectral like Resolution, J. Comp. Phys., 103, 16-42, 1992. | Zbl | MR
[14] , , Splitting Up Methods and Numerical Analysis of Some Multiscale Problems, Computational Fluid Dynamics J, 5, 2, 1996, 279-315.
[15] , Nonlinear Galerkin Methods, SIAM Journal of Numencal Analysis, 26, 1989, 1139-1157. | Zbl | MR
[16] , Nonlinear Galerkin Methods; The Finite Elements Case, Numensche Mathematik, 57, 1990, 205-226. | Zbl | MR
[17] Inertial Manifolds and Multigrid Methods, SIAM. J. Math. Anal. 21, 1990, 154-178. | Zbl | MR
[18] Infinite Dimensional Dynamical Systems in Mechantes and Physics, Applied Mathematical Science, Springer Verlag, 68, 1988. | Zbl | MR
[19] . Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear System, SIAM. J. Sci. Stat. Comput., 13 (1992) 631-644. | Zbl | MR
[20] . On Multilevel Splitting of Finite Element Spaces, Numer. Math. 49, 1986, 379-412. | Zbl | MR





