@article{M2AN_1991__25_6_749_0,
author = {Szepessy, A.},
title = {Convergence of a streamline diffusion finite element method for scalar conservation laws with boundary conditions},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {749--782},
year = {1991},
publisher = {AFCET - Gauthier-Villars},
address = {Paris},
volume = {25},
number = {6},
mrnumber = {1135992},
zbl = {0751.65061},
language = {en},
url = {https://www.numdam.org/item/M2AN_1991__25_6_749_0/}
}
TY - JOUR AU - Szepessy, A. TI - Convergence of a streamline diffusion finite element method for scalar conservation laws with boundary conditions JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1991 SP - 749 EP - 782 VL - 25 IS - 6 PB - AFCET - Gauthier-Villars PP - Paris UR - https://www.numdam.org/item/M2AN_1991__25_6_749_0/ LA - en ID - M2AN_1991__25_6_749_0 ER -
%0 Journal Article %A Szepessy, A. %T Convergence of a streamline diffusion finite element method for scalar conservation laws with boundary conditions %J ESAIM: Modélisation mathématique et analyse numérique %D 1991 %P 749-782 %V 25 %N 6 %I AFCET - Gauthier-Villars %C Paris %U https://www.numdam.org/item/M2AN_1991__25_6_749_0/ %G en %F M2AN_1991__25_6_749_0
Szepessy, A. Convergence of a streamline diffusion finite element method for scalar conservation laws with boundary conditions. ESAIM: Modélisation mathématique et analyse numérique, Tome 25 (1991) no. 6, pp. 749-782. https://www.numdam.org/item/M2AN_1991__25_6_749_0/
[BLN] , , , First order quasilinear equations with boundary conditions, Comm. P.D.E. 4 (9), pp. 1017-1034, 1979. | Zbl | MR
[Di] , Measure-valued solutions of conservation laws, Arch. Rat. Mech. Anal. 8 (1985). | Zbl | MR
[Di2] , Convergence of approximate solutions to conservation laws, Arch. Rat. Mech. Anal. 82 (1983), 27-70. | Zbl | MR
[DL] et , C. R. Acad., Sci. Paris 304, sériel (1987) 75-78. | Zbl | MR
[H] and , A new finite element formulation for computational fluid dynamics : IV. a discontinuity - capturing operator for multidimensional advective - diffusive Systems, Comput. Methods Appl. Mech. Engrg. 58 (1986) 329-336. | Zbl | MR
[JNP] , and , Finite element methods for linear hyperbolic problems, Comput. Methods Appl. Mech. Engrg. 45 (1984) 285-312. | Zbl | MR
[JS] and , Streamline diffusion methods for problems in fluid mechanics, Math. Comp. v. 47 (1986) pp.1-18. | Zbl | MR
[JSz I] and , On the convergence of a finite element method for a nonlinear hyperbolic conservation law, Math. Comp., vol.49, n° 180, oct. 1987, pp. 427-444. | Zbl | MR
[JSz II] , and On the convergence of shock-capturing streamline diffusion finite element methods for hyperbolic conservation laws, Math. Comp. 54 (1990) 82-107. | Zbl | MR
[Lax] , Shock waves and entropy, in Contributions to Nonlinear Functional Analysis, ed. E. A. Zarantonello, Academic Press (1971), 603-634. | Zbl | MR
[LR I] , Étude du problème mixte pour une équation quasi linéaire du premier ordre, C. R. Acad. Sci. Paris, t. 285, Série A-351. | Zbl | MR
[LR II] , Approximation de quelques problèmes hyperboliques non linéaires, Thèse d'État, Rennes, 1979.
[Li] , Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Paris, 1969. | Zbl | MR
[Sz I] , Convergence of a shock-capturing streamline diffusion finite element method for scalar conservation laws in two space dimensions, Math. Comp., Oct. 1989, 527-545. | Zbl | MR
[Sz II] , An existence result for scalar conservation laws using measure valued solutions, Comm. PDE, 14 (10), 1989, 1329-1350. | Zbl | MR
[Sz III] , Measure valued solutions of scalar conservation laws with boundary conditions, Arch. Rational Mech. Anal. 107, n°2, 1989, 181-193. | Zbl | MR
[Sz IV] , Convergence of the Streamline Diffusion Finite Element Method for Conservation Laws, Thesis (1989), Dept. of Math., Chalmers Univ., S-41296 Göteborg.
[Ta] , The Compensated Compactness Method Applied to Systems of Conservation Laws, J. M. Bail (ed.), Systems of Nonlinear Partial Differential Equations, 263-285. NATO ASI series C, Reidel Publishing Col. (1983). | Zbl | MR





